1
|
Hefayathullah M, Singh S, Ganesan V, Maduraiveeran G. Metal-organic frameworks for biomedical applications: A review. Adv Colloid Interface Sci 2024; 331:103210. [PMID: 38865745 DOI: 10.1016/j.cis.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Metal-organic frameworks (MOFs) are emergent materials in diverse prospective biomedical uses, owing to their inherent features such as adjustable pore dimension and volume, well-defined active sites, high surface area, and hybrid structures. The multifunctionality and unique chemical and biological characteristics of MOFs allow them as ideal platforms for sensing numerous emergent biomolecules with real-time monitoring towards the point-of-care applications. This review objects to deliver key insights on the topical developments of MOFs for biomedical applications. The rational design, preparation of stable MOF architectures, chemical and biological properties, biocompatibility, enzyme-mimicking materials, fabrication of biosensor platforms, and the exploration in diagnostic and therapeutic systems are compiled. The state-of-the-art, major challenges, and the imminent perspectives to improve the progressions convoluted outside the proof-of-concept, especially for biosensor platforms, imaging, and photodynamic therapy in biomedical research are also described. The present review may excite the interdisciplinary studies at the juncture of MOFs and biomedicine.
Collapse
Affiliation(s)
- Mohamed Hefayathullah
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Habibi B, Pashazadeh A, Pashazadeh S, Saghatforoush LA. A new method for the preparation of MgAl layered double hydroxide-copper metal-organic frameworks structures: application to electrocatalytic oxidation of formaldehyde. Sci Rep 2024; 14:5222. [PMID: 38433243 PMCID: PMC10909854 DOI: 10.1038/s41598-024-55770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
In this research, we present a novel design protocol for the in-situ synthesis of MgAl layered double hydroxide-copper metal-organic frameworks (LDH-MOFs) nanocomposite based on the electrocoagulation process and chemical method. The overall goal in this project is the primary synthesis of para-phthalic acid (PTA) intercalated MgAl-LDH with Cu (II) ions to produce the paddle-wheel like Cu-(PTA) MOFs nanocrystals on/in the MgAl-LDH structure. The physicochemical properties of final product; Cu-(PTA) MOFs/MgAl-LDH, were characterized by the surface analysis and chemical identification methods (SEM, EDX, TEM, XRD, BET, FTIR, CHN, DLS, etc.). The Cu-(PTA) MOFs/MgAl-LDH nanocomposite was used to modification of the carbon paste electrode (CPE); Cu-(PTA) MOFs/MgAl-LDH/CPE. The electrochemical performance of Cu-(PTA) MOFs/MgAl-LDH/CPE was demonstrated through the utilization of electrochemical methods. The results show a stable redox behavior of the Cu (III)/Cu (II) at the surface of Cu-(PTA) MOFs/MgAl-LDH/CPE in alkaline medium (aqueous 0.1 M NaOH electrolyte). Then, the Cu-(PTA) MOFs/MgAl-LDH/CPE was used as a new electrocatalyst toward the oxidation of formaldehyde (FA). Electrochemical data show that the Cu-(PTA) MOFs/MgAl-LDH/CPE exhibits superior electrocatalytic performance on the oxidation of FA. Also the diffusion coefficient, exchange current density (J°) and mean value of catalytic rate constant (Kcat) were found to be 1.18 × 10-6 cm2 s-1, 23 mA cm-2 and 0.4537 × 104 cm3 mol-1 s-1, respectively. In general, it can be said the Cu-(PTA) MOFs/MgAl-LDHs is promising candidate for applications in direct formaldehyde fuel cells.
Collapse
Affiliation(s)
- Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | - Ali Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran.
| | - Sara Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, 53714-161, Iran
| | - Lotf Ali Saghatforoush
- Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Islamic Republic of Iran
| |
Collapse
|
3
|
Xhanari K, Finšgar M. Recent advances in the modification of electrodes for trace metal analysis: a review. Analyst 2023; 148:5805-5821. [PMID: 37697964 DOI: 10.1039/d3an01252b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
This review paper summarizes the research published in the last five years on using different compounds and/or materials as modifiers for electrodes employed in trace heavy metal analysis. The main groups of modifiers are identified, and their single or combined application on the surface of the electrodes is discussed. Nanomaterials, film-forming substances, and polymers are among the most used compounds employed mainly in the modification of glassy carbon, screen-printed, and carbon paste electrodes. Composites composed of several compounds and/or materials have also found growing interest in the development of modified electrodes. Environmentally friendly substances and natural products (mainly biopolymers and plant extracts) have continued to be included in the modification of electrodes for trace heavy metal analysis. The main analytical performance parameters of the modified electrodes as well as possible interferences affecting the determination of the target analytes, are discussed. Finally, a critical evaluation of the main findings from these studies and an outlook discussing possible improvements in this area of research are presented.
Collapse
Affiliation(s)
- Klodian Xhanari
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
- University of Tirana, Faculty of Natural Sciences, Boulevard "Zogu I", 1001 Tirana, Albania
| | - Matjaž Finšgar
- University of Maribor, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
4
|
Habibi B, Pashazadeh S, Pashazadeh A, Saghatforoush LA. An amplified electrochemical sensor employing one-step synthesized nickel-copper-zinc ferrite/carboxymethyl cellulose/graphene oxide nanosheets composite for sensitive analysis of omeprazole. RSC Adv 2023; 13:29931-29943. [PMID: 37860173 PMCID: PMC10582824 DOI: 10.1039/d3ra04766k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
In this work, a signal amplification strategy was designed by the fabrication of a highly sensitive and selective electrochemical sensor based on nickel-copper-zinc ferrite (Ni0.4Cu0.2Zn0.4Fe2O4)/carboxymethyl cellulose (CMC)/graphene oxide nanosheets (GONs) composite modified glassy carbon electrode (GCE) for determination of omeprazole (OMP). The one-step synthesized Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy and X-ray diffraction techniques. Then, the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE was applied to study the electrochemical behavior of the OMP. Electrochemical data show that the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE exhibits superior electrocatalytic performance on the oxidation of OMP compared with bare GCE, GONs/GCE, CMC/GONs/GCE and MFe2O4/GCE (M = Cu, Ni and Zn including single, double and triple of metals) which can be attributed to the synergistic effects of the nanocomposite components, outstanding electrical properties of Ni0.4Cu0.2Zn0.4Fe2O4 and high conductivity of CMC/GONs as well as the further electron transport action of the nanocomposite. Under optimal conditions, the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE offers a high performance toward the electrodetermination of OMP with the wide linear-range responses (0.24-5 and 5-75 μM), lower detection limit (0.22 ± 0.05 μM), high sensitivity (1.1543 μA μM-1 cm-2), long-term signal stability and reproducibility (RSD = 2.54%). It should be noted that the Ni0.4Cu0.2Zn0.4Fe2O4/CMC/GONs/GCE sensor could also be used for determination of OMP in drug and biological samples, indicating its feasibility for real analysis.
Collapse
Affiliation(s)
- Biuck Habibi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | - Sara Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | - Ali Pashazadeh
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University Tabriz 53714-161 Iran +98 41 34327541 +98 41 31452135
| | | |
Collapse
|
5
|
Saghatforoush L, Mahmoudi T, Khorablou Z, Nasiri H, Bakhtiari A, Sajadi SAA. Electro-oxidation sensing of sumatriptan in aqueous solutions and human blood serum by Zn(II)-MOF modified electrochemical delaminated pencil graphite electrode. Sci Rep 2023; 13:16803. [PMID: 37798347 PMCID: PMC10556131 DOI: 10.1038/s41598-023-44034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
An electrochemical sensory platform is presented for determination of sumatriptan (SUM) in aqueous solutions and human blood serum. A pencil graphite electrode (PGE) was electrochemically delaminated by cyclic voltammetry technique, and then further modified using nanoparticles of a zinc-based metal-organic framework (Zn(II)-MOF). The fabricated Zn(II)-MOF/EDPGE electrode was utilized for sensitive electrochemical detection of SUM via an electro-oxidation reaction. The Zn(II)-MOF was hydrothermally synthesized and characterized by various techniques. The electrochemical delamination of PGE results in a porous substrate, facilitating the effective immobilization of the modifier. The designed sensor benefits from both enhanced surface area and an accelerated electron transfer rate, as evidenced by the chronocoulogram and Nyquist plots. Under optimized conditions, the developed sensor exhibited a linear response for 0.99-9.52 µM SUM solutions. A short response time of 5 s was observed for the fabricated sensor and the detection limit was found to be 0.29 μM. Selectivity of Zn(II)-MOF/EDPGE towards SUM was evaluated by examining the interference effect of codeine, epinephrine, acetaminophen, ascorbic acid, and uric acid, which are commonly found in biological samples. The developed sensor shows excellent performance with recovery values falling within the range of 96.6 to 111% for the analysis of SUM in human blood serum samples.
Collapse
Affiliation(s)
| | - Tohid Mahmoudi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
| | - Zeynab Khorablou
- Sharif Energy, Water and Environment Institute (SEWEI), Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
| | - Hassan Nasiri
- Department of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Akbar Bakhtiari
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
| | - Seyed Ali Akbar Sajadi
- Sharif Energy, Water and Environment Institute (SEWEI), Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
| |
Collapse
|
6
|
Barry SCL, Franke C, Mulaudzi T, Pokpas K, Ajayi RF. Review on Surface-Modified Electrodes for the Enhanced Electrochemical Detection of Selective Serotonin Reuptake Inhibitors (SSRIs). MICROMACHINES 2023; 14:1334. [PMID: 37512646 PMCID: PMC10386609 DOI: 10.3390/mi14071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Selective serotonin re-uptake inhibitors (SSRIs) are one of the most commonly prescribed classes of antidepressants used for the treatment of moderate to severe depressive disorder, personality disorders and various phobias. This class of antidepressants was created with improved margins of safety. However, genetic polymorphism may be responsible for the high variability in patients' responses to treatment, ranging from failure to delayed therapeutic responses to severe adverse effects of treatment. It is crucial that the appropriate amount of SSRI drugs is administered to ensure the optimum therapeutic efficacy and intervention to minimise severe and toxic effects in patients, which may be the result of accidental and deliberate cases of poisoning. Determining SSRI concentration in human fluids and the environment with high sensitivity, specificity and reproducibility, and at a low cost and real-time monitoring, is imperative. Electrochemical sensors with advanced functional materials have drawn the attention of researchers as a result of these advantages over conventional techniques. This review article aims to present functional materials such as polymers, carbon nanomaterials, metal nanomaterials as well as composites for surface modification of electrodes for sensitive detection and quantification of SSRIs, including fluoxetine, citalopram, paroxetine, fluvoxamine and sertraline. Sensor fabrication, sensor/analyte interactions, design rationale and properties of functional material and the electrocatalytic effect of the modified electrode on SSRI detection are discussed.
Collapse
Affiliation(s)
- Simone C L Barry
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Candice Franke
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Takalani Mulaudzi
- Biotechnology Department, Life Sciences Building, University of the Western Cape, Bellville 7535, South Africa
| | - Keagan Pokpas
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Rachel Fanelwa Ajayi
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
7
|
Kaur H, Devi N, Siwal SS, Alsanie WF, Thakur MK, Thakur VK. Metal-Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants. ACS OMEGA 2023; 8:9004-9030. [PMID: 36936323 PMCID: PMC10018528 DOI: 10.1021/acsomega.2c07719] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In previous years, different pollutants, for example, organic dyes, antibiotics, heavy metals, pharmaceuticals, and agricultural pollutants, have been of note to the water enterprise due to their insufficient reduction during standard water and wastewater processing methods. MOFs have been found to have potential toward wastewater management. This Review focused on the synthesis process (such as traditional, electrochemical, microwave, sonochemical, mechanochemical, and continuous-flow spray-drying method) of MOF materials. Moreover, the properties of the MOF materials have been discussed in detail. Further, MOF materials' applications for wastewater treatment (such as the removal of antibiotics, organic dyes, heavy metal ions, and agricultural waste) have been discussed. Additionally, we have compared the performances of some typical MOFs-based materials with those of other commonly used materials. Finally, the study's current challenges, future prospects, and outlook have been highlighted.
Collapse
Affiliation(s)
- Harjot Kaur
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nishu Devi
- Mechanics
and Energy Laboratory, Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samarjeet Singh Siwal
- Department
of Chemistry, M.M. Engineering College,
Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Walaa F. Alsanie
- Department
of Clinical Laboratories Sciences, The Faculty of Applied Medical
Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Manju Kumari Thakur
- Department
of Chemistry, Government Degree College Sarkaghat, Himachal Pradesh University, Shimla 171005, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
- School of
Engineering, University of Petroleum &
Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre
for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| |
Collapse
|
8
|
Nosakhare Amenaghawon A, Lewis Anyalewechi C, Uyi Osazuwa O, Agbovhimen Elimian E, Oshiokhai Eshiemogie S, Kayode Oyefolu P, Septya Kusuma H. A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Erk N, Bouali W, Mehmandoust M, Soylak M. An Electrochemical Sensor for Molnupiravir Based on a Metal‐Organic Framework Composited with Poly(3,4‐ethylene dioxythiophene): Poly(styrene sulfonate). ChemistrySelect 2022. [DOI: 10.1002/slct.202203325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nevin Erk
- Ankara University Faculty of Pharmacy Department of Analytical Chemistry 06560 Ankara Turkey
| | - Wiem Bouali
- Ankara University Faculty of Pharmacy Department of Analytical Chemistry 06560 Ankara Turkey
| | - Mohammad Mehmandoust
- Ankara University Faculty of Pharmacy Department of Analytical Chemistry 06560 Ankara Turkey
| | - Mustafa Soylak
- Erciyes University Faculty of Sciences Department of Chemistry 38039 Kayseri Turkey
- Technology Research & Application Center (TAUM) Erciyes University 38039 Kayseri Turkey
- Turkish Academy of Sciences (TUBA) Cankaya Ankara Turkey
| |
Collapse
|
10
|
Bustos E, Sandoval-González A, Martínez-Sánchez C. Detection and Treatment of Persistent Pollutants in Water: General Review of Pharmaceutical Products. ChemElectroChem 2022. [DOI: 10.1002/celc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erika Bustos
- Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Centro de Investigación y Desarrollo Tecnológico en Electroq76703México 76703 Pedro Escobedo MEXICO
| | - Antonia Sandoval-González
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| | - Carolina Martínez-Sánchez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC: Centro de Investigacion y Desarrollo Tecnologico en Electroquimica SC Science Parque Tecnológico Querétaro s/nSanfandila 76703 Pedro Escobedo MEXICO
| |
Collapse
|
11
|
Facile and fast synthesis of three-dimensional Ce-MOF/Ti3C2TX MXene composite for high performance electrochemical sensing of L-Tryptophan. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Recent Developments in Voltammetric Analysis of Pharmaceuticals Using Disposable Pencil Graphite Electrodes. Processes (Basel) 2022. [DOI: 10.3390/pr10030472] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The even growing production of both well-known and new derivatives with pharmaceutical action involves the need for developing facile and reliable methods for the analysis of these compounds. Among the widely used instrumental techniques, the electrochemical ones are probably the simplest and the most rapid, also having good performance characteristics. However, the key tool in electroanalysis is the working electrode. Due to the inherent electrochemical and economic advantages of the pencil graphite electrode (PGE), the interest in its applicability in the analysis of different analytes has continuously increased in recent years. Thus, this paper aims to review the scientific reports published in the last 10 years on the use of the disposable eco- and user-friendly PGEs in the electroanalysis of compounds of pharmaceutical importance in different matrices. The PGE characteristics and designs (bare or modified with various types of materials), along with their applications and performance parameters (e.g., linear range, limit of detection, and reproducibility), will be discussed, and their advantages and limitations will be critically emphasized.
Collapse
|
13
|
Vinothkumar V, Koventhan C, Chen SM, Huang YF. A facile development of rare earth neodymium nickelate nanoparticles for selective electrochemical determination of antipsychotic drug prochlorperazine. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Electrocatalytic oxidation and determination of hydrazine in alkaline medium through in situ conversion thin film nanostructured modified carbon ceramic electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Rison S, Mathew AT, George L, Maiyalagan T, Hegde G, Varghese A. Pt Nanospheres Decorated Graphene-β-CD Modified Pencil Graphite Electrode for the Electrochemical Determination of Vitamin B6. Top Catal 2022. [DOI: 10.1007/s11244-021-01559-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications. Biosens Bioelectron 2021; 199:113867. [PMID: 34890884 DOI: 10.1016/j.bios.2021.113867] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/22/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Metal-organic frameworks (MOFs) are remarkably porous materials that have sparked a lot of interest in recent years because of their fascinating architectures and variety of potential applications. This paper systematically summarizes recent breakthroughs in MOFs and their derivatives with different materials such as, carbon nanotubes, graphene oxides, carbon fibers, enzymes, antibodies and aptamers etc. for enhanced electrochemical sensing applications. Furthermore, an overview part is highlighted, which provides some insights into the future prospects and directions of MOFs and their derivatives in electrochemical sensing, with the goal of overcoming present limitations by pursuing more inventive ways. This overview can perhaps provide some creative ideas for future research on MOF-based materials in this rapidly expanding field.
Collapse
|
17
|
Vinothkumar V, Abinaya M, Chen SM. Ultrasonic assisted preparation of CoMoO4 nanoparticles modified electrochemical sensor for chloramphenicol determination. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|