1
|
Appiah-Ntiamoah R, Guye ME, Dabaro MD, Kim H. 1-D Carbon Nano-Coils Derived from Almond Skin: Exhibiting Density of State, Diffusivity, Electron Transfer Rate, and Dopamine Redox Modulation Properties Akin to Graphene Oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310406. [PMID: 38312086 DOI: 10.1002/smll.202310406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Indexed: 02/06/2024]
Abstract
The quest to develop graphene-like biomass-carbon for advanced biomolecule redox modulation and sensing remains a challenge. The primary obstacle is the limited ability of biomass to undergo extensive graphitization during pyrolysis resulting in the formation of amorphous carbon materials with a small carbon-double-bond-carbon domain size (Lsp2), density of state (LDOS), ion diffusivity (D), and electron transfer rate constant (Ks). Herein, using almond skin (AS) the morphology of biomass is demonstrated as the key to overcoming these limitations. AS consists of 1D syringyl/guaiacyl lignin nano-coils which under H2/H2 annealing transform into pyrolytic 1D carbon nano-coils (r-gC). Spectroscopy and microscopy analyses reveal that the sheet layering structure, crystallinity, LDOS, and Lsp2 of r-gC mimic those of graphene oxide (GO). Moreover, its unique 1D morphology and profound microstructure facilitate faster charge transfer and ion diffusion than GO's planar structure, leading to better redox modulation and sensing of the neurotransmitter dopamine (DA) in physiological fluids. r-gC's DA detection limit of 3.62 nM is below the lower threshold found in humans and on par with the state-of-the-art. r-gC is also DA-selective over 14 biochemicals. This study reveals that biomasses with well-defined and compact lignin structures are best suited for developing highly electroactive graphene-like biomass carbon.
Collapse
Affiliation(s)
- Richard Appiah-Ntiamoah
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Meseret Ethiopia Guye
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Mintesinot Dessalegn Dabaro
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
2
|
Yang Q, Liao J, Feng L, Wang S, Zhao Z, Wang J, Bu Y, Zhuang J, Zhang DW. One-step construction of multiplexed enzymatic biosensors using light-addressable electrochemistry on a single silicon photoelectrode. Biosens Bioelectron 2024; 253:116194. [PMID: 38467100 DOI: 10.1016/j.bios.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The multiplexed detection of metabolites in parallel within a single biosensor plate is sufficiently valuable but also challenging. Herein, we combine the inherent light addressability of silicon with the high selectivity of enzymes, for the construction of multiplexed photoelectrochemical enzymatic biosensors. To conduct a stable electrochemistry and reagentless biosensing on silicon, a new strategy involving the immobilization of both redox mediators and enzymes using an amide bond-based hydrogel membrane was proposed. The membrane characterization results demonstrated a covalent coupling of ferrocene mediator to hydrogel, in which the mediator acted as not only a signal generator but also a renewable sacrifice agent. By adding corresponding enzymes on different spots of hydrogel membrane modified silicon and recording local photocurrents with a moveable light pointer, this biosensor setup was used successfully to detect multiple metabolites, such as lactate, glucose, and sarcosine, with good analytical performances. The limits of detection of glucose, sarcosine and lactate were found to be 179 μM, 16 μM, and 780 μM with the linear ranges of 0.5-2.5 mM, 0.3-1.5 mM, and 1.0-3.0 mM, respectively. We believe this proof-of-concept study provides a simple and rapid one-step immobilization approach for the fabrication of reagentless enzymatic assays with silicon-based light-addressable electrochemistry.
Collapse
Affiliation(s)
- Qiaoyu Yang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaming Liao
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Luyao Feng
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sen Wang
- School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhibin Zhao
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Wang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Yazhong Bu
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an, 710049, China; School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - De-Wen Zhang
- Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; School of Future Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Institute of Medical Engineering, Translational Medicine Institute, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
3
|
Hatami-Fard G, Anastasova-Ivanova S. Advancements in Cerebrospinal Fluid Biosensors: Bridging the Gap from Early Diagnosis to the Detection of Rare Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:3294. [PMID: 38894085 PMCID: PMC11174891 DOI: 10.3390/s24113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.
Collapse
Affiliation(s)
- Ghazal Hatami-Fard
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
4
|
Khalife M, Stankovic D, Stankovic V, Danicka J, Rizzotto F, Costache V, Schwok AS, Gaudu P, Vidic J. Electrochemical biosensor based on NAD(P)H-dependent quinone reductase for rapid and efficient detection of vitamin K 3. Food Chem 2024; 433:137316. [PMID: 37690134 DOI: 10.1016/j.foodchem.2023.137316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Vitamin K refers to a group of vitamins that play an important role in blood coagulation and regulation of bone and vascular metabolism. However, vitamin K3 may give severe side effects in animal and humans when improperly added to food and feed due to its toxicity. Here, an electrochemical biosensor, based on the YaiB NADPH-dependent quinone reductase from Lactococcus lactis (YaiB), was developed to achieve rapid and redox probe-free detection of vitamin K3. First, the ability of the carbon electrode to distinguish between 1,4-benzoquinone and hydroquinone was demonstrated. Then, we engineered YaiB to work as a bioreceptor immobilized at the electrode and its sensitivity and specificity to reduce vitamin K3 were demonstrated. Finally, to demonstrate the practical potential of the biosensor, we tested it directly in spiked milk samples, achieving 15-minute quantification of the vitamin K3. The limit of detection was 0.87 µM and 4.1 µM in buffer and milk, respectively.
Collapse
Affiliation(s)
- Majd Khalife
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Dalibor Stankovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Vesna Stankovic
- Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Julia Danicka
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France; Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Vlad Costache
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France; MIMA2 Imaging Core Facility, INRAE, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, Jouy en Josas, France
| | | | - Philippe Gaudu
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France.
| |
Collapse
|
5
|
Yao H, Xiao J, Tang X. Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications. Bioengineering (Basel) 2023; 10:886. [PMID: 37627771 PMCID: PMC10451650 DOI: 10.3390/bioengineering10080886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Wastewater contains a significant quantity of organic matter, continuously causing environmental pollution. Timely and accurate detection of organic content in water can facilitate improved wastewater treatment and better protect the environment. Microbial fuel cells (MFCs) are increasingly recognized as valuable biological monitoring systems, due to their ability to swiftly detect organic indicators such as biological oxygen demand (BOD) and chemical oxygen demand (COD) in water quality. Different types of MFC sensors are used for BOD and COD detection, each with unique features and benefits. This review focuses on different types of MFC sensors used for BOD and COD detection, discussing their benefits and structural optimization, as well as the influencing factors of MFC-based biomonitoring systems. Additionally, the challenges and prospects associated with the development of reliable MFC sensing systems are discussed.
Collapse
Affiliation(s)
| | | | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430062, China
| |
Collapse
|
6
|
Mehmandoust M, Li G, Erk N. Biomass-Derived Carbon Materials as an Emerging Platform for Advanced Electrochemical Sensors: Recent Advances and Future Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohammad Mehmandoust
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, 06560 Ankara, Turkey
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Nevin Erk
- Department of Analytical Chemistry, Ankara University, Faculty of Pharmacy, 06560 Ankara, Turkey
| |
Collapse
|
7
|
Mohammadpour-Haratbar A, Zare Y, Rhee KY. Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects. Adv Colloid Interface Sci 2022; 309:102795. [DOI: 10.1016/j.cis.2022.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
|
8
|
Ma T, Mu W, Meng J, Song Q, Liu W, Wen D. Site-directed capture of laccase at edge-rich graphene via an interfacial hydrophobicity effect for direct electrochemistry study. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Zarei A, Hatefi-Mehrjardi A, Karimi MA, Mohadesi A. Impedimetric glucose biosensing based on drop-cast of porous graphene, nafion, ferrocene, and glucose oxidase biocomposite optimized by central composite design. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Ahmad M, Qureshi MT, Rehman W, Alotaibi NH, Gul A, Abdel Hameed RS, Elaimi MA, Abd el-kader M, Nawaz M, Ullah R. Enhanced photocatalytic degradation of RhB dye from aqueous solution by biogenic catalyst Ag@ZnO. JOURNAL OF ALLOYS AND COMPOUNDS 2022; 895:162636. [DOI: 10.1016/j.jallcom.2021.162636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|