1
|
Song J, Zhu L, Yu S, Li G, Wang D. The synergistic effect of adsorption and Fenton oxidation for organic pollutants in water remediation: an overview. RSC Adv 2024; 14:33489-33511. [PMID: 39439830 PMCID: PMC11495274 DOI: 10.1039/d4ra03050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
Water pollution from industrial sources presents a significant environmental challenge due to the presence of recalcitrant organic contaminants. These pollutants threaten human health and necessitate effective remediation strategies. This article reviewed the synergistic application of adsorption and Fenton oxidation for water treatment. Adsorption, a common technique, concentrates pollutants onto a solid surface, but offers limited degradation. Fenton oxidation, an advanced oxidation process (AOP), utilizes hydroxyl radicals for efficient organic compound breakdown. When adsorption and Fenton oxidation combine, adsorption pre-concentrates pollutants, boosting Fenton oxidation effectiveness. This review delves into the mechanisms and advantages of this integrated approach, highlighting its potential for enhanced removal of organic contaminants. The discussion encompasses the mechanisms of Fenton oxidation and the synergistic effects it has with adsorption. Additionally, various support materials employed in this combined process are explored, including carbon-based supports (activated carbon, graphene, carbon nanotubes and biochar), metal-organic frameworks (MOFs), and clays. Finally, the applicability of this approach to diverse wastewater streams, such as medical and industrial wastewater, is addressed. The review contains 105 references and summarizes the key findings and future perspectives for this promising water remediation technology.
Collapse
Affiliation(s)
- Junzhe Song
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| | - Linan Zhu
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| | - Sheng Yu
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| | - Guobiao Li
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| | - Dong Wang
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Ganjiang Innovation Academy, Chinese Academy of Sciences Ganzhou 341007 China
| |
Collapse
|
2
|
Trench AB, Fernandes CM, Moura JPC, Lucchetti LEB, Lima TS, Antonin VS, de Almeida JM, Autreto P, Robles I, Motheo AJ, Lanza MRV, Santos MC. Hydrogen peroxide electrogeneration from O 2 electroreduction: A review focusing on carbon electrocatalysts and environmental applications. CHEMOSPHERE 2024; 352:141456. [PMID: 38367878 DOI: 10.1016/j.chemosphere.2024.141456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.
Collapse
Affiliation(s)
- Aline B Trench
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Caio Machado Fernandes
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - João Paulo C Moura
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Thays S Lima
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanessa S Antonin
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - James M de Almeida
- Ilum Escola de Ciência - Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Brazil
| | - Pedro Autreto
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnologico Queretaro, 76703, Sanfandila, Pedro Escobedo, Queretaro, Mexico
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Mauro C Santos
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil.
| |
Collapse
|
3
|
Zhang Z, Zhao H, Wang Z, Hu Z, Wang Q, Meng E, Lai S, Ying J, Li H, Wu C. Strategies for promoting the degradation of phenol by electro-Fenton: Simultaneously promoting the generation and utilization of H 2O 2. ENVIRONMENTAL RESEARCH 2023; 236:116794. [PMID: 37527749 DOI: 10.1016/j.envres.2023.116794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Abstract
The use of the electro-Fenton process to continuously generate H2O2 and efficiently degrade organic pollutants is considered a promising technology. The ratio of generation of H2O2 is usually regarded as the critical step; however, how the H2O2 is utilized is also of particular importance. Herein, activated carbon was activated at different temperatures and used to explore the effect of nitrogen doping on the production and utilization of H2O2 in the electro-Fenton-based degradation of organic pollutants. The experimental results indicate that nitrogen-doped activated carbon simultaneously promotes the generation and utilization of H2O2, which is attributed to the regulation of the competition between phenol and O2 adsorption by the doped nitrogen. Nitrogen doping not only improves 2e-ORR selectivity but also aggregates phenol near the cathode to balance the concentrations of phenol and ·OH. Density functional theory (DFT) calculations further confirmed that pyrrole-N as a dopant promoted the adsorption of phenol, while pyridine-N was more favorable for O2 adsorption. The unique balance of nitrogen types possessed by modified activated carbon NAC-750 permits the efficient synergistic generation and utilization of H2O2 in a balanced manner during the degradation of phenol. This work provides a new direction for the rational nitrogen-doping modification of activated carbon for the electro-Fenton-based degradation of organic pollutants.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| | - Zhonghua Wang
- School of Civil Engineering and Architecture, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Zhipei Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Qingshu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Erlin Meng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Shiwei Lai
- School of Civil Engineering and Architecture, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Jiaxin Ying
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Hongguang Li
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Chuanyan Wu
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| |
Collapse
|
4
|
García-Espinoza JD, Treviño-Reséndez J, Robles I, Acosta-Santoyo G, Godínez LA. A review of electro-Fenton and ultrasound processes: towards a novel integrated technology for wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29877-9. [PMID: 37737947 DOI: 10.1007/s11356-023-29877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
Nowadays, the presence of persistent dissolved pollutants in water has received increasing attention due to their toxic effects on living organisms. Considering the limitations of conventional wastewater treatment processes for the degradation of these compounds, advanced oxidation processes such as electro-Fenton and sono-chemical process, as well as their combination, appear as potentially effective options for the treatment of wastewater contaminated with bio-recalcitrant pollutants. In view of the importance of the development of processes using real effluents, this review aims to provide a comprehensive perspective of sono-electro-Fenton-related processes applied for real wastewater treatment. In the first section, the fundamentals and effectiveness of both homogeneous and heterogeneous electro-Fenton approaches for the treatment of real wastewater are presented. While the second part of this work describes the fundamentals of ultrasound-based processes, the last section focuses on the coupling of the two methods for real wastewater treatment and on the effect of the main operational parameters of the process. On the basis of the information presented, it is suggested that sono-electro-Fenton processes substantially increase the efficiency of the treatment as well as the biodegradability of the treated wastewater. The combined effect results from mass transfer improvement, electrode cleaning and activation, water electrolysis, and the electro-Fenton-induced production of hydroxyl radicals. The information presented in this work is expected to be useful for closing the gap between laboratory-scale assays and the development of novel wastewater technologies.
Collapse
Affiliation(s)
- Josué D García-Espinoza
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico
| | - José Treviño-Reséndez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C. Parque Tecnológico Querétaro Sanfandila SN, Pedro Escobedo, 76703, Querétaro, Mexico
| | - Gustavo Acosta-Santoyo
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico
| | - Luis A Godínez
- Centro de Investigación en Química para la Economía Circular, CIQEC, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, 76010, Querétaro, Querétaro, Mexico.
| |
Collapse
|
5
|
Banda-Alemán JA, Camacho-Callejas M, Salazar-López ML, Robles I, Acosta-Santoyo G, García-Espinoza JD, Rodríguez-Valadez FJ, Manriquez J, Godínez LA. Alternating polarization of Fe modified carbon fiber materials. towards the development of single-electrode electro-Fenton batch reactors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
6
|
Ersan G, Cerrón-Calle GA, Ersan MS, Garcia-Segura S. Opportunities for in situ electro-regeneration of organic contaminant-laden carbonaceous adsorbents. WATER RESEARCH 2023; 232:119718. [PMID: 36774755 DOI: 10.1016/j.watres.2023.119718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/19/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Adsorptive separation technologies have proven to be effective on organic contaminant removal in aqueous water. However, the breakthrough of contaminants is inevitable and can be at relatively low bed volumes, which makes the regeneration of spent adsorbents an urgent need. Electrochemically induced regeneration processes are given special attention and may provide ease of operation through in situ regeneration avoiding (i) removal and transport adsorbents, and (ii) avoiding use of hazardous chemicals (i.e., organic solvents, acids, or bases). Therefore, this review article critically evaluates the fundamental aspects of in situ electro-regeneration for spent carbons, and later discusses specific examples related to the treatment of emerging contaminants (such as per- and polyfluoroalkyl substances or PFAS). The fundamental concepts of electrochemically driven processes are comprehensively defined and addressed in terms of (i) adsorbent characteristics, (ii) contaminant properties, (iii) adsorption/regeneration driving operational parameters and conditions, and (iv) the competitive effects of water matrices. Additionally, future research needs and challenges to enhance understanding of in situ electro-regeneration applications for organic contaminants (specifically PFAS)-laden adsorbents are identified and outlined as a future key perspective.
Collapse
Affiliation(s)
- Gamze Ersan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, United States.
| | - Gabriel Antonio Cerrón-Calle
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, United States
| | - Mahmut S Ersan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, United States
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, United States.
| |
Collapse
|
7
|
Deng F, Jiang J, Sirés I. State-of-the-art review and bibliometric analysis on electro-Fenton process. CARBON LETTERS 2023; 33. [PMCID: PMC9594000 DOI: 10.1007/s42823-022-00420-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/04/2023]
Abstract
The electro-Fenton (EF) process was first proposed in 1996 and, since then, considerable development has been achieved for its application in wastewater treatment, especially at lab and pilot scale. After more than 25 years, the high efficiency, versatility and environmental compatibility of EF process has been demonstrated. In this review, bibliometrics has been adopted as a tool that allows quantifying the development of EF as well as introducing some useful correlations. As a result, information is summarized in a more visual manner that can be easily analyzed and interpreted as compared to conventional reviewing. During the recent decades under review, 83 countries have contributed to the dramatic growth of EF publications, with China, Spain and France leading the publication output. The top 12 most cited articles, along with the top 32 most productive authors in the EF field, have been screened. Four stages have been identified as main descriptors of the development of EF throughout these years, being each stage characterized by relevant breakthroughs. To conclude, a general cognitive model for the EF process is proposed, including atomic, microscopic and macroscopic views, and future perspectives are discussed.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090 People’s Republic of China
- Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Ignasi Sirés
- Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Ebratkhahan M, Zarei M, Zaier Akpinar I, Metin Ö. One-pot synthesis of graphene hydrogel/M (M: Cu, Co, Ni) nanocomposites as cathodes for electrochemical removal of rifampicin from polluted water. ENVIRONMENTAL RESEARCH 2022; 214:113789. [PMID: 35798272 DOI: 10.1016/j.envres.2022.113789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, the removal of pharmaceutical contaminants from water resources and wastewater is of great importance due to environmental and health issues. Over the decades, various methods have been reported to remove pollutants from wastewater. Among the developed methods, advanced oxidation processes (AOPs) have received significant attention from researchers. In this study, we report the one-pot synthesis of graphene hydrogel-metal (GH-M, M: Co, Ni, Cu) nanocomposites via the combination of polyol and hydrothermal methods. The structure of the resulting nanocomposites was examined by transmission electron microscopy (TEM), inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy methods. Afterward, as-prepared GH-Cu, GH-Co, and GH-Ni nanocomposites were used to prepare cathodes for the electro-Fenton (EF) process to remove rifampicin (RIF) from polluted water. The effect of operational parameters, including current density (mA/cm2), initial pH, initial RIF concentration (mg/L), and process time (min) was investigated via response surface methodology (RSM). The optimal values for current density, pH, initial RIF concentration, and process time using GH-Ni as cathode were 30 mA/cm2, 5, 30 mg/L, and 90 min, respectively. The results at optimal values showed that the maximum RIF removal efficiency for GH-Cu, GH-Co, and GH-Ni cathodes was 90.47, 92.60, and 93.69%, respectively. Brunauer Emmett Teller (BET), atomic force microscopy (AFM), energy-dispersive X-ray (EDX), and cyclic voltammetry (CV) analyses were performed to investigate the performance of the cathodes for the RIF removal. Finally, total organic carbon (TOC), gas chromatography-mass spectrometry (GC-MS), and atomic absorption spectroscopy (AAS) analyses were performed for further investigation of the RIF removal from polluted water. The results claimed that one-pot synthesized GH-M cathodes can effectively remove RIF from polluted water through EF process.
Collapse
Affiliation(s)
- Masoud Ebratkhahan
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Ibtihel Zaier Akpinar
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Önder Metin
- Department of Chemistry, College of Sciences, Koç University, 34450 Sariyer, Istanbul, Turkey.
| |
Collapse
|
9
|
Lai S, Zhao H, Qu Z, Tang Z, Yang X, Jiang P, Wang Z. Promotion of formaldehyde degradation by electro-Fenton: Controlling the distribution of ·OH and formaldehyde near cathode to increase the reaction probability. CHEMOSPHERE 2022; 307:135776. [PMID: 35868527 DOI: 10.1016/j.chemosphere.2022.135776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
The mismatch of pollutant concentration and ·OH concentration is the key reason for the inefficient degradation of formaldehyde in the electro-Fenton system. Therefore, formaldehyde and ·OH are adsorbed near the cathode, and the high concentration reaction region is constructed to increase the reaction probability, which is called control of the reaction region. Through nitrogen doping modification of the activated carbon cathode, the adsorption capacity of the modified cathode for formaldehyde and active species, and the selectivity of the two-electron oxygen reduction reaction were deeply analyzed. The results show that the suitable nitrogen doping form of the modified cathode significantly promotes the adsorption capacity of formaldehyde and H2O2, which is beneficial to realizing the promotion of formaldehyde degradation by nitrogen doped cathodes in the electro-Fenton system through control of the reaction region. Graphite nitrogen and pyrrolic nitrogen improve formaldehyde adsorption by enhancing the van der Waals force (8.897 mg g-1), and pyridinic nitrogen improve H2O2 adsorption (1.841 mg g-1) by enhancing the effect of hydrogen bonding interaction. Nitrogen doping enhances Fe2+ regeneration, which contributes to the generation of ·OH at the cathode, and promotes formaldehyde degradation. The control of the reaction region through modification of the electro-Fenton cathode achieved formaldehyde degradation of 35.1 mg L-1 (48.51% higher than that of the unmodified cathode), which provides a promising process for formaldehyde treatment.
Collapse
Affiliation(s)
- Shiwei Lai
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Haiqian Zhao
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, 163318, China.
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ziyu Tang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Xue Yang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Peng Jiang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Zhonghua Wang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| |
Collapse
|
10
|
Tu S, Ning Z, Duan X, Zhao X, Chang L. Efficient electrochemical hydrogen peroxide generation using TiO2/rGO catalyst and its application in electro-Fenton degradation of methyl orange. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Flower-like FeMoO4@1T-MoS2 micro-sphere for effectively cleaning binary dyes via photo-Fenton oxidation. J Colloid Interface Sci 2022; 622:284-297. [DOI: 10.1016/j.jcis.2022.04.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/19/2022]
|
12
|
García-Espinoza JD, Robles I, Durán-Moreno A, Godínez LA. Study of the performance of a cylindrical flow-through electro-Fenton reactor using different arrangements of carbon felt electrodes: effect of key operating parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42305-42318. [PMID: 35075566 DOI: 10.1007/s11356-021-18118-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
In this work, a cylindrical flow-through electro-Fenton reactor containing graphite felt electrodes and an Fe(II) loaded resin was evaluated for the production of the Fenton reaction mixture and for the degradation of amoxicillin (AMX) and fecal coliforms containing aqueous solutions. First, the influence of several factors such as treatment time, current intensity, flow rate, and electrode position was investigated for the electrogeneration of H2O2 and the energetic consumption by means of a factorial design methodology using a 24 factorial matrix. Electric current and treatment time were found to be the pivotal parameters influencing the H2O2 production with contributions of 40.2 and 26.9%, respectively. The flow rate had low influence on the responses; however, 500 mL min-1 (with an average residence time of 1.09 min obtained in the residence time distribution analysis) allowed to obtain a better performance due to the high mass transport to and from the electrodes. As expected, polarization was also found to play an important role, since for the cathode-to-anode flow direction, lower H2O2 concentrations were observed when compared with the anode-to-cathode flow arrangement, indicating that part of the H2O2 produced in the cathode was destroyed at the anode. A fluorescence study of hydroxyl radical production, on the other hand, showed that higher yields were obtained using an anode-to-cathode flow direction (up to 3.88 µM), when compared with experiments carried out using a cathode-to-anode flow path (3.11 µM). The removal of a commercial formulation of the antibiotic AMX was evaluated in terms of total organic carbon, achieving up to 57.9% and 38.63% of pollutant mineralization using synthetic and real sanitary wastewater spiked, respectively. Finally, the efficiency of the process on the inactivation of fecal coliforms in sanitary wastewater samples was assessed, reducing 90% of the bacteria after 5 min of electrolysis.
Collapse
Affiliation(s)
- Josué Daniel García-Espinoza
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas SN, 76010, Querétaro, Querétaro, México
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, México
| | | | - Luis A Godínez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas SN, 76010, Querétaro, Querétaro, México.
| |
Collapse
|
13
|
Construction of Novel Electro-Fenton Systems by Magnetically Decorating Zero-Valent Iron onto RuO2-IrO2/Ti Electrode for Highly Efficient Pharmaceutical Wastewater Treatment. WATER 2022. [DOI: 10.3390/w14071044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Electro-Fenton (E-Fenton) technique has shown great potential in wastewater treatment, while the sustainable and continuing supply of Fe2+ remains challenging. Herein, we demonstrate the construction of a novel E-Fenton system by magnetically decorating zero-valent iron (ZVI) onto a RuO2-IrO2/Ti (ZVI-RuO2-IrO2/Ti) electrode for high-efficient treatment of pharmaceutical wastewater, which is considerably refractory and harmful to conventional biological processes. By using ZVI as a durable source of Fe(II) irons, 78.69% of COD and 76.40% of TOC may be rapidly removed by the developed ZVI-RuO2-IrO2/Ti electrode, while the ZVI-RuO2-IrO2/Ti electrode using ZVI only reduces 35.64% of COD under optimized conditions at initial COD and TOC values of 5500 mg/L and 4300 mg/L, respectively. Moreover, the increase in BOD5/COD from 0.21 to 0.52 highlights the enhanced biodegradability of the treated effluent. The analysis of a simultaneously formed precipitation on electrodes suggests that the coagulation process dominated by Fe3+/Fe2+ also plays a non-negligible role in pharmaceutical wastewater treatment. In addition, the monitoring of the evolution of nitrogen elements and the formation of by-products in the E-Fenton process verifies its great capacity toward those organic pollutants found in pharmaceutical wastewater. Our study offers a practical solution for enhancing the performance of E-Fenton systems, and effectively treating refractory pharmaceutical wastewater.
Collapse
|