1
|
Guo X, He X, Liu X, Sun S, Sun H, Dong K, Li T, Yao Y, Xie T, Zheng D, Luo Y, Chen J, Liu Q, Li L, Chu W, Jiang Z, Sun X, Tang B. Arming Amorphous NiMoO 4 on Nickel Phosphide Enables Highly Stable Alkaline Seawater Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400141. [PMID: 38431944 DOI: 10.1002/smll.202400141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/16/2024] [Indexed: 03/05/2024]
Abstract
Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2P@NiMoO4/NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2P@NiMoO4/NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2, respectively, surpassing that of Ni2P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2P/NF (120 h) and Ni(OH)2/NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2-/PO4 3- from Ni2P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO-.
Collapse
Affiliation(s)
- Xiankun Guo
- College of Science, Xihua University, Chengdu, Sichuan, 610054, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xuwei Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Hang Sun
- Department of Science and Environmental Studies, Faculty of Liberal Arts and Social Science, The Education University of Hong Kong, Hong Kong, 999077, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Tengyue Li
- College of Science, Xihua University, Chengdu, Sichuan, 610054, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Ting Xie
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Wei Chu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Zhenju Jiang
- College of Science, Xihua University, Chengdu, Sichuan, 610054, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
- Laoshan Laboratory, Qingdao, Shandong, 266237, China
| |
Collapse
|
2
|
Pang H, Yu Z, Qin X, Fan B, Jiang R, Li S, Hou Y, Tang W, Wang M, Shi Z. Adjusting the valence band center of Co-Ni-bimetallic sulfides through lattice expansion and stacking faults triggered by strain engineering to boost oxygen evolution reaction. J Colloid Interface Sci 2023; 646:503-516. [PMID: 37209550 DOI: 10.1016/j.jcis.2023.05.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Stress engineering can improve catalytic performance by straining the catalyst lattice. An electrocatalyst, Co3S4/Ni3S2-10%Mo@NC, was prepared with abundant lattice distortion to boost oxygen evolution reaction (OER). With the assistance of the intramolecular steric hindrance effect of metal-organic frameworks, slow dissolution by MoO42- of the Ni substrate and recrystallization of Ni2+ was observed in the process of Co(OH)F crystal growth with mild temperature and short time reaction. The lattice expansion and stacking faults created defects inside the Co3S4 crystal, improved the material conductivity, optimized the valence band electron distribution of the material, and promoted the rapid conversion of the reaction intermediates. The presence of reactive intermediates of the OER under catalytic conditions was investigated using operando Raman spectroscopy. The electrocatalysts exhibited super high performance, a current density of 10 mA cm-2 at an overpotential of 164 mV and 100 mA cm-2 at 223 mV, which were comparable to those of integrated RuO2. Our work for the first time demonstrates that the dissolution-recrystallization triggered by strain engineering is a good modulation approach to adjust the structure and surface activity of catalyst, suggesting promising industrial application.
Collapse
Affiliation(s)
- Han Pang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Zebin Yu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China.
| | - Xuanning Qin
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Ben Fan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China
| | - Shuang Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yanping Hou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Wenjun Tang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Mi Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Zhikai Shi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| |
Collapse
|
3
|
Ma K, Chang X, Wang Z, Deng R, Wu X, Yang H. Tunable d-band center of a NiFeMo alloy with enlarged lattice strain enhancing the intrinsic catalytic activity for overall water-splitting. NANOSCALE 2023; 15:5843-5854. [PMID: 36861662 DOI: 10.1039/d2nr07150a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing efficient bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) under alkaline conditions is prospective for reducing energy consumption during water electrolysis. In this work, we successfully synthesized nanocluster structure composites composed of NiFeMo alloys with controllable lattice strain by the electrodeposition method at room temperature. The unique structure of NiFeMo/SSM (stainless steel mesh) facilitates the exposure of abundant active sites and promotes mass transfer and gas exportation. The NiFeMo/SSM electrode exhibits a low overpotential of 86 mV at 10 mA cm-2 for the HER and 318 mV at 50 mA cm-2 for the OER, and the assembled device reveals a low voltage of 1.764 V at 50 mA cm-2. Moreover, both the experimental results and theoretical calculations reveal that the dual doping of Mo and Fe can induce the tunable lattice strain of nickel, which in turn changes the d-band center and electronic interaction of the catalytically active site, and finally enhances the HER and OER catalytic activity. This work may provide more options for the design and preparation of bifunctional catalysts based on non-noble metals.
Collapse
Affiliation(s)
- Kewen Ma
- School of Chemistry & Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi, China.
| | - Xueru Chang
- School of Chemistry & Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi, China.
| | - Zehua Wang
- School of Chemistry & Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi, China.
| | - Renchao Deng
- School of Chemistry & Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi, China.
| | - Xiao Wu
- School of Chemistry & Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi, China.
| | - Hao Yang
- School of Chemistry & Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Mahidashti Z, Rezaei M, Borrelli M, Shaygan Nia A. Insight into the stability mechanism of nickel and manganese antimonate catalytic films during the oxygen evolution reaction in acidic media. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Yang S, Tiwari SK, Zhu Z, Cao D, He H, Chen Y, Thummavichai K, Wang N, Jiang M, Zhu Y. In Situ Fabrication of Mn-Doped NiMoO 4 Rod-like Arrays as High Performance OER Electrocatalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:827. [PMID: 36903705 PMCID: PMC10005328 DOI: 10.3390/nano13050827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The slow kinetics of the oxygen evolution reaction (OER) is one of the significant reasons limiting the development of electrochemical hydrolysis. Doping metallic elements and building layered structures have been considered effective strategies for improving the electrocatalytic performance of the materials. Herein, we report flower-like nanosheet arrays of Mn-doped-NiMoO4/NF (where NF is nickel foam) on nickel foam by a two-step hydrothermal method and a one-step calcination method. The doping manganese metal ion not only modulated the morphologies of the nickel nanosheet but also altered the electronic structure of the nickel center, which could be the result of superior electrocatalytic performance. The Mn-doped-NiMoO4/NF electrocatalysts obtained at the optimum reaction time and the optimum Mn doping showed excellent OER activity, requiring overpotentials of 236 mV and 309 mV to drive 10 mA cm-2 (62 mV lower than the pure NiMoO4/NF) and 50 mA cm-2 current densities, respectively. Furthermore, the high catalytic activity was maintained after continuous operation at a current density of 10 mA cm-2 of 76 h in 1 M KOH. This work provides a new method to construct a high-efficiency, low-cost, stable transition metal electrocatalyst for OER electrocatalysts by using a heteroatom doping strategy.
Collapse
Affiliation(s)
- Shiming Yang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Santosh K. Tiwari
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Department of Chemistry, NMAM Institute of Technology, Nitte (Deemed to be University), Nitte 547110, Karnataka, India
| | - Zhiqi Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Dehua Cao
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Huan He
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yu Chen
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Kunyapat Thummavichai
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
- Department of Mathematics, Physics and Electrical Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
| | - Nannan Wang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Mingjie Jiang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yanqiu Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| |
Collapse
|
6
|
Tang Y, Wang M, Liu J, Li S, Kang J, Wang J, Xu Z. Electro-enhanced sulfamethoxazole degradation efficiency via carbon embedding iron growing on nickel foam cathode activating peroxymonosulfate: Mechanism and degradation pathway. J Colloid Interface Sci 2022; 624:24-39. [PMID: 35660892 DOI: 10.1016/j.jcis.2022.05.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
The combination of peroxymonosulfate (PMS) activation by hetero-catalysis and electrolysis (EC) attracted incremental concerns as an efficient antibiotics degradation method. In this work, carbon embedding iron (C@Fe) catalysts growing on nickel foam (NF) composite cathode (C@Fe/NF) was prepared via in-situsolvothermal growth and carbonization method and used to activate PMS toward sulfamethoxazole (SMX) degradation. The EC-[C@Fe/NF(II)]-PMS system exhibited an excellent PMS activation, with 100% SMX removal efficiency achieving within 30 min. Reactive oxygen species (ROS) generation and their roles in SMX degradation were confirmed by quenching experiments and electron paramagnetic resonance. It was found that singlet oxygen (1O2) and surface-bound radicals were responsible for SMX degradation, and 1O2 contributed the most. Furthermore, the possible SMX degradation pathways were proposed on the base of the detected degradation intermediates and density functional theory (DFT) calculation. Toxicity changes were also assessed by the Ecological Structure Activity Relationships (ESAR). This work provides a practicable strategy for synergistically enhancing PMS activation efficiency and promoting antibiotics removal.
Collapse
Affiliation(s)
- Yiwu Tang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Min Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China.
| | - Jiayun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Siyan Li
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Jin Kang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Jiadian Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| | - Zhenqi Xu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110011, PR China
| |
Collapse
|
7
|
Construction of superhydrophilic metal-organic frameworks with hierarchical microstructure for efficient overall water splitting. J Colloid Interface Sci 2022; 623:405-416. [PMID: 35594597 DOI: 10.1016/j.jcis.2022.05.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 01/15/2023]
Abstract
Metal-organic frameworks (MOFs) display promising potential due to their exquisite structural advantages. Carboxylate-based MOFs, such as MIL-53 structures, attract a lot of attention among MOF families because of their remarkable stability in water and even alkaline condition. Hence, the delicate hierarchical microstructure is constructed by introducing MoO42- into NH2-MIL-53(NiFe) using a straightforward solvothermal strategy. The NiFeMo-MOF/NF electrode manifests a superior OER performance, producing an overpotential of 239 mV at 50 mA cm-2 and a decent Tafel slope of 87.0 mV dec-1. Furthermore, in a typical electrodeposition equipment, NiFeMo-MOF/NF is applied as the working electrode and the composite electrode named as (M) Ni-NiOOH/NF is generated by electrodeposition and electrooxidation process to assess HER performance, producing an overpotential of 119 mV at 50 mA cm-2 and a decent Tafel slope of 58.3 mV dec-1. The integrated electrolysis device delivers an extraordinarily low cell voltage of 1.50 V at 10 mA cm-2 while applying NiFeMo-MOF/NF as the anode, (M)Ni-NiOOH/NF as the cathode for overall water splitting, exceeding the noble RuO2/NF||Pt-C/NF (1.60 V@10 mA cm-2). This study provides a promising design strategy for future electrolysis catalysts.
Collapse
|
8
|
Luo H, Liang J, Zhou J, Yin Z, Zhang Z, Liu X. Synergistic coupling of FeOOH with Mo-incorporated NiCo LDH towards enhancing the oxygen evolution reaction. NEW J CHEM 2022. [DOI: 10.1039/d2nj00867j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FeOOH-modified NiCoMo LDH/NF with excellent OER activity and stability was successfully prepared using a hydrothermal method combined with electrodeposition.
Collapse
Affiliation(s)
- Hang Luo
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Changsha 410004, P. R. China
- College of Material Science a nd Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jin Liang
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Changsha 410004, P. R. China
- College of Material Science a nd Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jialin Zhou
- College of Material Science a nd Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhao Yin
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Changsha 410004, P. R. China
- College of Material Science a nd Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Ziyi Zhang
- College of Material Science a nd Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Xiubo Liu
- Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Changsha 410004, P. R. China
- College of Material Science a nd Engineering, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| |
Collapse
|