1
|
Lei YJ, Zhao L, Lai WH, Huang Z, Sun B, Jaumaux P, Sun K, Wang YX, Wang G. Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Chem Soc Rev 2024; 53:3829-3895. [PMID: 38436202 DOI: 10.1039/d3cs01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.
Collapse
Affiliation(s)
- Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zefu Huang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Pauline Jaumaux
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Kening Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
2
|
Aliyan H, Fazaeli R, Foroutanfar Z, Richeson D, Li Y. Hollow Ag/Mn(btc): As Highly Efficient Catalyst for Oxidation of Sulfides to Sulfoxides. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Zhang BW, Sun B, Fu P, Liu F, Zhu C, Xu BM, Pan Y, Chen C. A Review of the Application of Modified Separators in Inhibiting the "shuttle effect" of Lithium-Sulfur Batteries. MEMBRANES 2022; 12:membranes12080790. [PMID: 36005705 PMCID: PMC9413873 DOI: 10.3390/membranes12080790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 05/29/2023]
Abstract
Lithium-sulfur batteries with high theoretical specific capacity and high energy density are considered to be one of the most promising energy storage devices. However, the "shuttle effect" caused by the soluble polysulphide intermediates migrating back and forth between the positive and negative electrodes significantly reduces the active substance content of the battery and hinders the commercial applications of lithium-sulfur batteries. The separator being far from the electrochemical reaction interface and in close contact with the electrode poses an important barrier to polysulfide shuttle. Therefore, the electrochemical performance including coulombic efficiency and cycle stability of lithium-sulfur batteries can be effectively improved by rationally designing the separator. In this paper, the research progress of the modification of lithium-sulfur battery separators is reviewed from the perspectives of adsorption effect, electrostatic effect, and steric hindrance effect, and a novel modification of the lithium-sulfur battery separator is prospected.
Collapse
Affiliation(s)
- Bo-Wen Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Bo Sun
- Shandong Zhongsheng Pharmaceutical Equipment Co., Ltd., Yantai 264010, China
| | - Pei Fu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Feng Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Chen Zhu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Bao-Ming Xu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Yong Pan
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Chi Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
4
|
Zhou J, Wu T, Zhou X, Xi J. Advanced cathodic free-standing interlayers for lithium-sulfur batteries: understanding, fabrication, and modification. Phys Chem Chem Phys 2022; 24:17383-17396. [PMID: 35848443 DOI: 10.1039/d2cp02097a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the past decades, lithium-sulfur batteries (LSBs) have demonstrated huge practical potential due to their ultrahigh theoretical specific capacity, low price, and environmental friendliness. However, LSBs are still faced with the problems of volumetric expansion, slow reaction kinetics, and short working life due to the shuttling of polysulfides. The introduction of a free-standing interlayer is a good way to solve the problems because of the physical confinement, chemical entrapment, and conversion. This review summarizes the common fabrication methods of free-standing interlayers, including the power-originated and film-originated methods. The modification of the as-prepared free-standing interlayers is also accomplished into physical treatment, atomic doping, and compound introduction. Finally, we conclude and compare the different fabrication methods of free-standing interlayers and their modifications and put forward the outlook of the high-performance free-standing interlayers.
Collapse
Affiliation(s)
- Jianhua Zhou
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Ting Wu
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Xin Zhou
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Jingyu Xi
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Chong YL, Zhao DD, Wang B, Feng L, Li SJ, Shao LX, Tong X, Du X, Cheng H, Zhuang JL. Metal-Organic Frameworks Functionalized Separators for Lithium-Sulfur Batteries. CHEM REC 2022; 22:e202200142. [PMID: 35833508 DOI: 10.1002/tcr.202200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Lithium sulfur batteries (LSBs) have attracted tremendous attention owing to their high theoretical specific capacity and specific energy. However, their practical applications are hindered by poor cyclic life, mainly caused by polysulfide shuttling. The development of advanced materials to mitigate the polysulfide shuttling effect is urgently demanded. Metal-organic frameworks (MOFs) have been exploited as multifunctional materials for the decoration of separators owing to their high surface area, structural diversity, tunable pore size, and easy tailor ability. In this review, we aim to present the state-of-the-art MOF-based separators for LSBs. Particular attention is paid to the rational design (pore aperture, metal node, functionality, and dimension) of MOFs with enhanced ability for anchoring polysulfides and facilitating Li+ transportation. Finally, the challenges and perspectives are provided regarding to the future design MOF-based separators for high-performance LSBs.
Collapse
Affiliation(s)
- Yu-Liang Chong
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Dong-Dong Zhao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Bing Wang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Li Feng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Si-Jun Li
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Lan-Xing Shao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Xin Tong
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Xuan Du
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - H Cheng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| | - Jin-Liang Zhuang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, Guiyang, 550001, P.R. China
| |
Collapse
|