1
|
Zhu Y, Wu D, Tang J, Braaten D, Liu B, Peng Z. Advances in electrocatalytic dehydrogenation of ethylamine to acetonitrile. Chem Commun (Camb) 2024; 60:9007-9021. [PMID: 39091223 DOI: 10.1039/d4cc03431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The electrocatalytic dehydrogenation of ethylamine (EDH), owing to its high hydrogen content, holds broad prospects in electrochemical hydrogen (H2) production, H2 storage, and addressing energy issues, thus deserving wide attention. In this feature article, we first summarized the fundamentals of thermocatalytic and electrocatalytic EDH and reviewed the recent state-of-the-art advances in catalyst research, specifically platinum group metal (PGM) catalysts and non-PGM catalysts. We systematically discussed the potential applications of electrocatalytic EDH in energy storage and conversion. Finally, we provide our perspective on the key challenges and future developments in this field. We believe this feature article will offer helpful guidance for oriented design and optimization of stable and efficient catalysts for electrocatalytic EDH and related energy applications.
Collapse
Affiliation(s)
- Yanlin Zhu
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| | - Dezhen Wu
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, OH, 44325, USA
| | - Jinyao Tang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| | - Dakota Braaten
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Bin Liu
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Zhenmeng Peng
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
2
|
Guo E, Hao L, Huo Y, Nsabimana A, Dong J, Su M, Zhang Y. Simple synthesis of peanut shell-like MoCoFe-HO@CoMo-LDH for efficient alkaline oxygen evolution reaction. J Colloid Interface Sci 2024; 664:748-755. [PMID: 38492376 DOI: 10.1016/j.jcis.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Due to the depletion of fossil energy on earth, it is crucial to develop resource rich and efficient non-precious metal electrocatalysts for oxygen evolution reaction (OER). Herein, we synthesized an efficient and economical electrocatalyst using a simple self-assembly strategy. Firstly, rod-shaped MIL-88A was synthesized by hydrothermal method. Then, the surface of MIL-88A was functionalized and encapsulated in zeolitic imidazolate framework-67 (ZIF-67) by hydrothermal method. The combination of MIL-88A and ZIF-67 resulted in a slight ion-exchange reaction between Co2+ and the surface of MIL-88A to generate CoFe-LDH@ZIF-67 core-shell structure. Afterwards, in the presence of Mo6+, ZIF-67 was converted into CoMo-nanocages through ion-exchange reactions, forming a core-shell structure of MoCoFe hydr (oxy) oxide@CoMo-LDH (MoCoFe-HO@CoMo-LDH). Due to the advantages of core-shell structure and composition, this material exhibits excellent OER characteristics, with a small Tafel slope (45.11 mV dec-1) and low overpotential (324 mV) at 10 mA cm-2. It exhibits good stability in alkaline media. This research work provides a novel approach for the development of efficient and economical non-precious metal electrocatalysts.
Collapse
Affiliation(s)
- Enwei Guo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Lin Hao
- College of Science, Hebei Agricultural University, 071001 Baoding, PR China
| | - Youhua Huo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Anaclet Nsabimana
- Chemistry Department, College of Science and Technology, University of Rwanda, Po Box: 3900, Kigali, Rwanda
| | - Jiangxue Dong
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Ming Su
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Yufan Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| |
Collapse
|
3
|
Xiao J, Zhang S, Sun Y, Liu X, He G, Liu H, Khan J, Zhu Y, Su Y, Wang S, Han L. Urchin-Like Structured MoO 2 /Mo 3 P/Mo 2 C Triple-Interface Heterojunction Encapsulated within Nitrogen-Doped Carbon for Enhanced Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206472. [PMID: 36642818 DOI: 10.1002/smll.202206472] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The development of highly efficient and cost-effective hydrogen evolution reaction (HER) catalysts is highly desirable to efficiently promote the HER process, especially under alkaline condition. Herein, a polyoxometalates-organic-complex-induced carbonization method is developed to construct MoO2 /Mo3 P/Mo2 C triple-interface heterojunction encapsulated into nitrogen-doped carbon with urchin-like structure using ammonium phosphomolybdate and dopamine. Furthermore, the mass ratio of dopamine and ammonium phosphomolybdate is found critical for the successful formation of such triple-interface heterojunction. Theoretical calculation results demonstrate that such triple-interface heterojunctions possess thermodynamically favorable water dissociation Gibbs free energy (ΔGH2O ) of -1.28 eV and hydrogen adsorption Gibbs free energy (ΔGH* ) of -0.41 eV due to the synergistic effect of Mo2 C and Mo3 P as water dissociation site and H* adsorption/desorption sites during the HER process in comparison to the corresponding single components. Notably, the optimal heterostructures exhibit the highest HER activity with the low overpotential of 69 mV at the current density of 10 mA cm-2 and a small Tafel slope of 60.4 mV dec-1 as well as good long-term stability for 125 h. Such remarkable results have been theoretically and experimentally proven to be due to the synergistic effect between the unique heterostructures and the encapsulated nitrogen-doped carbon.
Collapse
Affiliation(s)
- Jiamin Xiao
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shishi Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xuetao Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Guangling He
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Heng Liu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Javid Khan
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanlin Zhu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, Netherlands
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensingand Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Lei Han
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|