1
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han YK. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| | - Krishan Kumar
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Danostia-San Sebastian, 20018, Spain
| | - Moein Safarkhani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Muhammad Umer
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Danostia-San Sebastian, 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100715, Republic of Korea
| |
Collapse
|
2
|
Yang Z, Zhang C, Qi C. Selecting effective eletrocatalyst from Cu single-atoms and nanoparticles for realizing highly sensitive electrochemical sensing of glucose and H 2O 2. NANOSCALE 2024; 16:13642-13653. [PMID: 38963160 DOI: 10.1039/d4nr01926a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Which is more suitable as a sensing material between metal single-atoms and nanoparticles? Herein, electrocatalytic behaviors of copper single-atoms (Cu SAs) and copper nanoparticles (CuNPs) toward H2O2 reduction and glucose oxidation were studied. Surprisingly, the electrocatalytic activity of Cu SAs and CuNPs showed significant differences in H2O2 reduction and glucose oxidation. Compared with CuNPs, Cu SAs exhibit outstanding activity in the electrocatalytic reduction of H2O2 but exhibit weak activity in the electrocatalytic oxidation of glucose. On the contrary, CuNPs exhibit excellent activity in the electrochemical oxidation of glucose but have very weak electrocatalytic activity towards H2O2 reduction. DFT results show that H2O2 reduction is more favourable with Cu SAs; however, the electrochemical oxidation of glucose with CuNPs requires overcoming much lower energy barriers than that with Cu SAs. This study proves that both metal single-atoms and nanoparticles are not omnipotent, which provides ideas for constructing highly active sensing materials.
Collapse
Affiliation(s)
- Ziyin Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Chongchao Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Chengcheng Qi
- School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| |
Collapse
|
3
|
Bushira FA, Hussain A, Wang P, Li H, Zheng L, Gao Z, Dong H, Jin Y. Boosting Electrochemiluminescence Performance of a Dual-Active Site Iron Single-Atom Catalyst-Based Luminol-Dissolved Oxygen System via Plasmon-Induced Hot Holes. Anal Chem 2024; 96:9704-9712. [PMID: 38819721 DOI: 10.1021/acs.analchem.4c01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Due to the commonly low content of biomarkers in diseases, increasing the sensitivity of electrochemiluminescence (ECL) systems is of great significance for in vitro ECL diagnosis and biodetection. Although dissolved O2 (DO) has recently been considered superior to H2O2 as a coreactant in the most widely used luminol ECL systems owing to its improved stability and less biotoxicity, it still has unsatisfactory ECL performance because of its ultralow reactivity. In this study, an effective plasmonic luminol-DO ECL system has been developed by complexing luminol-capped Ag nanoparticles (AgNPs) with plasma-treated Fe single-atom catalysts (Fe-SACs) embedded in graphitic carbon nitride (g-CN) (pFe-g-CN). Under optimal conditions, the performance of the resulting ECL system could be markedly increased up to 1300-fold compared to the traditional luminol-DO system. Further investigations revealed that duple binding sites of pFe-g-CN and plasmonically induced hot holes that disseminated from AgNPs to g-CN surfaces lead to facilitate significantly the luminous reaction process of the system. The proposed luminol-DO ECL system was further employed for the stable and ultrasensitive detection of prostate-specific antigen in a wide linear range of 1.0 fg/mL to 1 μg/mL, with a pretty low limit of detection of 0.183 fg/mL.
Collapse
Affiliation(s)
- Fuad Abduro Bushira
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ping Wang
- Key Laboratory of Preparation and Applications of Environment Friendly Materials of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuangqiang Gao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Haifeng Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Yongdong Jin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
4
|
Khand NH, Solangi AR, Shaikh H, Shah ZUH, Bhagat S, Sherazi STH, López-Maldonado EA. Novel electrochemical ZnO/MnO 2/rGO nanocomposite-based catalyst for simultaneous determination of hydroquinone and pyrocatechol. Mikrochim Acta 2024; 191:342. [PMID: 38795174 DOI: 10.1007/s00604-024-06416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024]
Abstract
An innovative electrochemical sensing method is introduced for dihydroxy benzene (DHB) isomers, specifically hydroquinone (HQ) and pyrocatechol (PCC), employing a zinc-oxide/manganese-oxide/reduced-graphene-oxide (ZnO/MnO2/rGO) nanocomposite (NC) as an electrode modifier material. Comprehensive characterization confirmed well-dispersed ZnO/MnO2 nanoparticles on rGO sheets. Electrochemical analysis revealed the ZnO/MnO2/rGO-NC-based modified electrode possesses low electrical resistance (126.2 Ω), high electrocatalytic activity, and rapid electron transport, attributed to the synergies between ZnO, MnO2 and rGO. The modified electrode demonstrated exceptional electrochemical performance in terms of selectivity for the simultaneous detection of HQ and PCC. Differential pulse voltammetry studies validated the proposed sensor's ability to detect HQ and PCC within linear response ranges of 0.01-115 μM and 0.03-60.53 μM, with detection limits of 0.0055 µM and 0.0053 µM, respectively. Practical validation using diverse water samples showcased excellent percent recovery of HQ and PCC using the ZnO/MnO2/rGO-based electrochemical sensor, underscoring the sensor's potential for real-world applications in environmental monitoring.
Collapse
Affiliation(s)
- Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Huma Shaikh
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Zia-Ul-Hassan Shah
- Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| | - Sanoober Bhagat
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Syed Tufail H Sherazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, 22390, Tijuana, Baja California, CA, CP, Mexico
| |
Collapse
|
5
|
Yang X, Lv S, Gan L, Wang C, Wang Z, Zhang Z. Single-Fe-Atom Catalyst for Sensitive Electrochemical Detection of Caffeic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53189-53197. [PMID: 37946326 DOI: 10.1021/acsami.3c11378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A single-atom catalyst (Fe SAs/-N-C) with excellent stability and conductivity was strategically fabricated via high-temperature calcination using the NiFe layered double hydroxide (LDH)/ZIF-8 composite as precursors. With the help of Ni as a catalyst, a great number of carbon nanotubes were produced whereby the isolated carbon bulks were interconnected to form an "island-bridge"-like 3D network structure, which greatly enhanced the exposure of active sites and the electron transfer. Accordingly, caffeic acid (CA) with versatile biological and pharmacological activities was chosen as the model analyte. The Fe SAs/-N-C with Fe-N4 as the catalytic active site was employed to establish the electrochemical sensing of CA with satisfactory sensitivity, selectivity, and long-term stability. This work expands the application range of single-atom catalysts and contributes a significant reference for the synthesis of hybrid double-atom catalysts.
Collapse
Affiliation(s)
- Xiumin Yang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Sijia Lv
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Liyong Gan
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400030, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
Chen S, Zhou D, Yu J, Huang Z, Wang L. Porous carbon nanosheets derived from two-dimensional Fe-MOF for simultaneous voltammetric sensing of dopamine and uric acid. NANOTECHNOLOGY 2023; 34:495102. [PMID: 37604147 DOI: 10.1088/1361-6528/acf225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
It is of great significance for electrochemical sensors to simultaneously detect dopamine (DA) and uric acid (UA) related to biological metabolism. In this work, two-dimensional (2D) porous carbon nanosheets (CNS) was prepared as electrocatalysts to improve the sensitivity, the selectivity, and the detection limit of the simultaneous detection. First, 2D amorphous iron-metal organic frameworks (Fe-MOF) was synthesized with Fe3+and terephthalic acid via a facile wet chemistry method at room temperature. And then, CNS was prepared by pyrolysis and pickling of Fe-MOF. CNS had large specific surface area, good electrical conductivity and lots of carbon defects. The response currents of the CNS modified electrode was larger than those of the control electrodes in the simultaneous determination. The simultaneous determination was measured via differential pulse voltammetry to reduce the effect of capacitive currents on quantitative analysis. The CNS modified electrodes showed high sensitivity and low detection limit for the simultaneous detection of DA and UA. The modified electrodes have been successfully used to detect DA and UA in normal human serum.
Collapse
Affiliation(s)
- Shouhui Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, People's Republic of China
| | - Dan Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, People's Republic of China
| | - Jingguo Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, People's Republic of China
| | - Zhenzhong Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, People's Republic of China
| | - Li Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, People's Republic of China
| |
Collapse
|
7
|
Sun J, Wang Z, Guan J. Single-atom nanozyme-based electrochemical sensors for health and food safety monitoring. Food Chem 2023; 425:136518. [PMID: 37290237 DOI: 10.1016/j.foodchem.2023.136518] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Electrochemical sensors and biosensors play an important role in many fields, including biology, clinical trials, and food industry. For health and food safety monitoring, accurate and quantitative sensing is needed to ensure that there is no significantly negative impact on human health. It is difficult for traditional sensors to meet these requirements. In recent years, single-atom nanozymes (SANs) have been successfully used in electrochemical sensors due to their high electrochemical activity, good stability, excellent selectivity and high sensitivity. Here, we first summarize the detection principle of SAN-based electrochemical sensors. Then, we review the detection performances of small molecules on SAN-based electrochemical sensors, including H2O2, dopamine (DA), uric acid (UA), glucose, H2S, NO, and O2. Subsequently, we put forward the optimization strategies to promote the development of SAN-based electrochemical sensors. Finally, the challenges and prospects of SAN-based sensors are proposed.
Collapse
Affiliation(s)
- Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
8
|
Narendra Kumar AV, Muthu Prabhu S, Shin WS, Yadav KK, Ahn Y, Abdellattif MH, Jeon BH. Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Bushira FA, Wang P, Wang Y, Hou S, Diao X, Li H, Zheng L, Jin Y. Plasmon-Boosted Fe, Co Dual Single-Atom Catalysts for Ultrasensitive Luminol-Dissolved O 2 Electrochemiluminescence Detection of Prostate-Specific Antigen. Anal Chem 2022; 94:9758-9765. [PMID: 35749700 DOI: 10.1021/acs.analchem.2c01370] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Improving the sensitivity of electrochemiluminescence (ECL) systems is highly desired for in vitro ECL diagnosis and bio-detections due to the often-low content of biomarkers in diseases. And dissolved O2 (DO) as a co-reactant is considered superior to H2O2 in the most commonly used luminol ECL systems due to better stability and low biotoxicity, but it still suffers from low ECL performance due to the low reactivity of DO. In this study, an efficient luminol-DO ECL system was developed through the complexing of Fe, Co dual single-atom catalysts (D-SACs) supported by N-doped graphene with the luminol-capped Ag nanoparticles (AgNPs). Benefiting from the electronic interaction between Fe and Co metal sites in the relevant D-SACs and plasmon enhancement of AgNPs, the performance of the corresponding ECL system could be significantly boosted up to ≈677-fold under optimal testing conditions, comparable to the classic luminol-O2 system. Furthermore, the developed luminol-DO ECL system was successfully applied for the stable ultrasensitive detection of prostate-specific antigen (PSA) in a wide linear range of 1 fg/mL to 1 μg/mL, with a low limit of detection (0.98 fg/mL).
Collapse
Affiliation(s)
- Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei 230026, Anhui, P. R. China
| | - Ping Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei 230026, Anhui, P. R. China
| | - Shuping Hou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei 230026, Anhui, P. R. China
| | - Xingkang Diao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei 230026, Anhui, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei 230026, Anhui, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.,University of Science and Technology of China, No. 96 JinZhai Road, Hefei 230026, Anhui, P. R. China
| |
Collapse
|