1
|
Ryzhii M, Ryzhii E. Atrioventricular nodal reentrant tachycardia onset, sustainability, and spontaneous termination in rabbit atrioventricular node model with autonomic nervous system control. Front Physiol 2025; 15:1529426. [PMID: 39896194 PMCID: PMC11782234 DOI: 10.3389/fphys.2024.1529426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Atrioventricular nodal reentrant tachycardia (AVNRT) is one of the most common types of paroxysmal supraventricular tachycardia. The activity of the autonomic nervous system (ANS) is known to influence episodes of AVNRT, yet the precise mechanisms underlying this effect remain incompletely understood. In this study, we update our compact multifunctional model of the rabbit atrioventricular (AV) node with ANS control to simulate AVNRT. The refractoriness of the model cells is adjusted by a specific ANS coefficient, which impacts the effective refractory periods, conduction delays, and intrinsic frequency of pacemaker cells. Using this model, we investigate the onset, sustainability, and spontaneous termination of typical slow-fast and atypical fast-slow forms of AVNRT under ANS modulation. The conditions for the onset and sustainability of AVNRT can exist independently in various combinations. Differences in the effective refractory periods of the slow and fast pathways of the AV node during anterograde and retrograde conduction determine the specific form of AVNRT. For the first time, a computer model reveals the potential to identify hidden processes within the AV node, thereby bringing us closer to understanding the role of ANS control in AVNRT. The results obtained are consistent with clinical and experimental data and represent a novel tool for studying the electrophysiological mechanisms behind this type of arrhythmia.
Collapse
Affiliation(s)
- Maxim Ryzhii
- Department of Computer Science, University of Aizu, Aizu-Wakamatsu, Japan
| | - Elena Ryzhii
- Department of Anatomy and Histology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
2
|
Erhardt J, Ludwig S, Brock J, Hörning M. Native mechano-regulative matrix properties stabilize alternans dynamics and reduce spiral wave stabilization in cardiac tissue. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1443156. [PMID: 39381499 PMCID: PMC11458432 DOI: 10.3389/fnetp.2024.1443156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024]
Abstract
The stability of wave conduction in the heart is strongly related to the proper interplay between the electrophysiological activation and mechanical contraction of myocytes and extracellular matrix (ECM) properties. In this study, we statistically compare bioengineered cardiac tissues cultured on soft hydrogels ( E ≃ 12 kPa) and rigid glass substrates by focusing on the critical threshold of alternans, network-physiological tissue properties, and the formation of stable spiral waves that manifest after wave breakups. For the classification of wave dynamics, we use an improved signal oversampling technique and introduce simple probability maps to identify and visualize spatially concordant and discordant alternans as V- and X-shaped probability distributions. We found that cardiac tissues cultured on ECM-mimicking soft hydrogels show a lower variability of the calcium transient durations among cells in the tissue. This lowers the likelihood of forming stable spiral waves because of the larger dynamical range that tissues can be stably entrained with to form alternans and larger spatial spiral tip movement that increases the chance of self-termination on the tissue boundary. Conclusively, we show that a dysfunction in the excitation-contraction coupling dynamics facilitates life-threatening arrhythmic states such as spiral waves and, thus, highlights the importance of the network-physiological interplay between contractile myocytes and the ECM.
Collapse
Affiliation(s)
| | | | | | - Marcel Hörning
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
3
|
Cusimano N, Gerardo-Giorda L, Gizzi A. A space-fractional bidomain framework for cardiac electrophysiology: 1D alternans dynamics. CHAOS (WOODBURY, N.Y.) 2021; 31:073123. [PMID: 34340362 DOI: 10.1063/5.0050897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Cardiac electrophysiology modeling deals with a complex network of excitable cells forming an intricate syncytium: the heart. The electrical activity of the heart shows recurrent spatial patterns of activation, known as cardiac alternans, featuring multiscale emerging behavior. On these grounds, we propose a novel mathematical formulation for cardiac electrophysiology modeling and simulation incorporating spatially non-local couplings within a physiological reaction-diffusion scenario. In particular, we formulate, a space-fractional electrophysiological framework, extending and generalizing similar works conducted for the monodomain model. We characterize one-dimensional excitation patterns by performing an extended numerical analysis encompassing a broad spectrum of space-fractional derivative powers and various intra- and extracellular conductivity combinations. Our numerical study demonstrates that (i) symmetric properties occur in the conductivity parameters' space following the proposed theoretical framework, (ii) the degree of non-local coupling affects the onset and evolution of discordant alternans dynamics, and (iii) the theoretical framework fully recovers classical formulations and is amenable for parametric tuning relying on experimental conduction velocity and action potential morphology.
Collapse
Affiliation(s)
| | | | - Alessio Gizzi
- Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| |
Collapse
|
4
|
Overdrive pacing of spiral waves in a model of human ventricular tissue. Sci Rep 2020; 10:20632. [PMID: 33244010 PMCID: PMC7691998 DOI: 10.1038/s41598-020-77314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/30/2020] [Indexed: 01/03/2023] Open
Abstract
High-voltage electrical defibrillation remains the only reliable method of quickly controlling life-threatening cardiac arrhythmias. This paper is devoted to studying an alternative approach, low-voltage cardioversion (LVC), which is based on ideas from non-linear dynamics and aims to remove sources of cardiac arrhythmias by applying high-frequency stimulation to cardiac tissue. We perform a detailed in-silico study of the elimination of arrhythmias caused by rotating spiral waves in a TP06 model of human cardiac tissue. We consider three parameter sets with slopes of the APD restitution curve of 0.7, 1.1 and 1.4, and we study LVC at the baseline and under the blocking of INa and ICaL and under the application of the drugs verapamil and amiodarone. We show that pacing can remove spiral waves; however, its efficiency can be substantially reduced by dynamic instabilities. We classify these instabilities and show that the blocking of INa and the application of amiodarone increase the efficiency of the method, while the blocking of ICaL and the application of verapamil decrease the efficiency. We discuss the mechanisms and the possible clinical applications resulting from our study.
Collapse
|
5
|
Kistamás K, Veress R, Horváth B, Bányász T, Nánási PP, Eisner DA. Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Front Pharmacol 2020; 11:72. [PMID: 32161540 PMCID: PMC7052815 DOI: 10.3389/fphar.2020.00072] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium ions (Ca2+) play a major role in the cardiac excitation-contraction coupling. Intracellular Ca2+ concentration increases during systole and falls in diastole thereby determining cardiac contraction and relaxation. Normal cardiac function also requires perfect organization of the ion currents at the cellular level to drive action potentials and to maintain action potential propagation and electrical homogeneity at the tissue level. Any imbalance in Ca2+ homeostasis of a cardiac myocyte can lead to electrical disturbances. This review aims to discuss cardiac physiology and pathophysiology from the elementary membrane processes that can cause the electrical instability of the ventricular myocytes through intracellular Ca2+ handling maladies to inherited and acquired arrhythmias. Finally, the paper will discuss the current therapeutic approaches targeting cardiac arrhythmias.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - David A Eisner
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Jaimes R, McCullough D, Siegel B, Swift L, Hiebert J, Mclnerney D, Posnack NG. Lights, camera, path splitter: a new approach for truly simultaneous dual optical mapping of the heart with a single camera. BMC Biomed Eng 2019; 1. [PMID: 31768502 PMCID: PMC6876868 DOI: 10.1186/s42490-019-0024-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Optical mapping of transmembrane voltage and intracellular calcium is a powerful tool for investigating cardiac physiology and pathophysiology. However, simultaneous dual mapping of two fluorescent probes remains technically challenging. We introduce a novel, easy-to-use approach that requires a path splitter, single camera and excitation light to simultaneously acquire voltage and calcium signals from whole heart preparations, which can be applied to other physiological models – including neurons and isolated cardiomyocytes. Results Complementary probes were selected that could be excited with a single wavelength light source. Langendorff-perfused hearts (rat, swine) were stained and imaged using a sCMOS camera outfitted with an optical path splitter to simultaneously acquire two emission fields at high spatial and temporal resolution. Voltage (RH237) and calcium (Rhod2) signals were acquired concurrently on a single sensor, resulting in two 384 × 256 images at 814 frames per second. At this frame rate, the signal-to-noise ratio was 47 (RH237) and 85 (Rhod2). Imaging experiments were performed on small rodent hearts, as well as larger pig hearts with sufficient optical signals. In separate experiments, each dye was used independently to assess crosstalk and demonstrate signal specificity. Additionally, the effect of ryanodine on myocardial calcium transients was validated – with no measurable effect on the amplitude of optical action potentials. To demonstrate spatial resolution, ventricular tachycardia was induced –resulting in the novel finding that spatially discordant calcium alternans can be present in different regions of the heart, even when electrical alternans remain concordant. The described system excels in providing a wide field of view and high spatiotemporal resolution for a variety of cardiac preparations. Conclusions We report the first multiparametric mapping system that simultaneously acquires calcium and voltage signals from cardiac preparations, using a path splitter, single camera and excitation light. This approach eliminates the need for multiple cameras, excitation light patterning or frame interleaving. These features can aid in the adoption of dual mapping technology by the broader cardiovascular research community, and decrease the barrier of entry into panoramic heart imaging, as it reduces the number of required cameras. Electronic supplementary material The online version of this article (10.1186/s42490-019-0024-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael Jaimes
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Bryan Siegel
- Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Luther Swift
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - James Hiebert
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Daniel Mclnerney
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric and Surgical Innovation: Children's National Health System, 6th floor, M7708, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Children's National Heart Institute: Children's National Health System, 111 Michigan Avenue NW, Washington, DC 20010, USA.,Department of Pediatrics, Department of Pharmacology & Physiology, School of Medicine and Health Sciences: George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| |
Collapse
|
7
|
Tomek J, Hao G, Tomková M, Lewis A, Carr C, Paterson DJ, Rodriguez B, Bub G, Herring N. β-Adrenergic Receptor Stimulation and Alternans in the Border Zone of a Healed Infarct: An ex vivo Study and Computational Investigation of Arrhythmogenesis. Front Physiol 2019; 10:350. [PMID: 30984029 PMCID: PMC6450465 DOI: 10.3389/fphys.2019.00350] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Following myocardial infarction (MI), the myocardium is prone to calcium-driven alternans, which typically precedes ventricular tachycardia and fibrillation. MI is also associated with remodeling of the sympathetic innervation in the infarct border zone, although how this influences arrhythmogenesis is controversial. We hypothesize that the border zone is most vulnerable to alternans, that β-adrenergic receptor stimulation can suppresses this, and investigate the consequences in terms of arrhythmogenic mechanisms. Methods and Results: Anterior MI was induced in Sprague-Dawley rats (n = 8) and allowed to heal over 2 months. This resulted in scar formation, significant (p < 0.05) dilation of the left ventricle, and reduction in ejection fraction compared to sham operated rats (n = 4) on 7 T cardiac magnetic resonance imaging. Dual voltage/calcium optical mapping of post-MI Langendorff perfused hearts (using RH-237 and Rhod2) demonstrated that the border zone was significantly more prone to alternans than the surrounding myocardium at longer cycle lengths, predisposing to spatially heterogeneous alternans. β-Adrenergic receptor stimulation with norepinephrine (1 μmol/L) attenuated alternans by 60 [52–65]% [interquartile range] and this was reversed with metoprolol (10 μmol/L, p = 0.008). These results could be reproduced by computer modeling of the border zone based on our knowledge of β-adrenergic receptor signaling pathways and their influence on intracellular calcium handling and ion channels. Simulations also demonstrated that β-adrenergic receptor stimulation in this specific region reduced the formation of conduction block and the probability of premature ventricular activation propagation. Conclusion: While high levels of overall cardiac sympathetic drive are a negative prognostic indicator of mortality following MI and during heart failure, β-adrenergic receptor stimulation in the infarct border zone reduced spatially heterogeneous alternans, and prevented conduction block and propagation of extrasystoles. This may help explain recent clinical imaging studies using meta-iodobenzylguanidine (MIBG) and 11C-meta-hydroxyephedrine positron emission tomography (PET) which demonstrate that border zone denervation is strongly associated with a high risk of future arrhythmia.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Guoliang Hao
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Markéta Tomková
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew Lewis
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Zlochiver S, Johnson C, Tolkacheva EG. Constant DI pacing suppresses cardiac alternans formation in numerical cable models. CHAOS (WOODBURY, N.Y.) 2017; 27:093903. [PMID: 28964144 DOI: 10.1063/1.4999355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cardiac repolarization alternans describe the sequential alternation of the action potential duration (APD) and can develop during rapid pacing. In the ventricles, such alternans may rapidly turn into life risking arrhythmias under conditions of spatial heterogeneity. Thus, suppression of alternans by artificial pacing protocols, or alternans control, has been the subject of numerous theoretical, numerical, and experimental studies. Yet, previous attempts that were inspired by chaos control theories were successful only for a short spatial extent (<2 cm) from the pacing electrode. Previously, we demonstrated in a single cell model that pacing with a constant diastolic interval (DI) can suppress the formation of alternans at high rates of activation. We attributed this effect to the elimination of feedback between the pacing cycle length and the last APD, effectively preventing restitution-dependent alternans from developing. Here, we extend this idea into cable models to study the extent by which constant DI pacing can control alternans during wave propagation conditions. Constant DI pacing was applied to ventricular cable models of up to 5 cm, using human kinetics. Our results show that constant DI pacing significantly shifts the onset of both cardiac alternans and conduction blocks to higher pacing rates in comparison to pacing with constant cycle length. We also demonstrate that constant DI pacing reduces the propensity of spatially discordant alternans, a precursor of wavebreaks. We finally found that the protective effect of constant DI pacing is stronger for increased electrotonic coupling along the fiber in the sense that the onset of alternans is further shifted to higher activation rates. Overall, these results support the potential clinical applicability of such type of pacing in improving protocols of implanted pacemakers, in order to reduce the risk of life-threatening arrhythmias. Future research should be conducted in order to experimentally validate these promising results.
Collapse
Affiliation(s)
- S Zlochiver
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69379, Israel
| | - C Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis 55455, USA
| | - E G Tolkacheva
- Department of Biomedical Engineering, University of Minnesota, Minneapolis 55455, USA
| |
Collapse
|
9
|
Tereshchenko LG, Berger RD. Towards a better understanding of QT interval variability. Ther Adv Drug Saf 2014; 2:245-51. [PMID: 25083216 DOI: 10.1177/2042098611421209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) Guideline E14 recommends 'Thorough QT Study' as a standard assessment of drug-induced QT interval prolongation. At the same time, the value of drug-induced QTc prolongation as a surrogate marker for risk of life-threatening polymorphic ventricular tachycardia known as torsades des pointes remains controversial. Beat-to-beat variability of QT interval was recently proposed as an alternative metric. The following review addresses mechanisms of beat-to-beat QT variability, methods of QT interval variability measurements, and its prognostic value in clinical studies.
Collapse
Affiliation(s)
- Larisa G Tereshchenko
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald D Berger
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Carnegie 592, 600 N. Wolfe St., Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Dvir H, Zlochiver S. Stochastic cardiac pacing increases ventricular electrical stability--a computational study. Biophys J 2014; 105:533-42. [PMID: 23870274 DOI: 10.1016/j.bpj.2013.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022] Open
Abstract
The ventricular tissue is activated in a stochastic rather than in a deterministic rhythm due to the inherent heart rate variability (HRV). Low HRV is a known predictor for arrhythmia events and traditionally is attributed to autonomic nervous system tone damage. Yet, there is no model that directly assesses the antiarrhythmic effect of pacing stochasticity per se. One-dimensional (1D) and two-dimensional (2D) human ventricular tissues were modeled, and both deterministic and stochastic pacing protocols were applied. Action potential duration restitution (APDR) and conduction velocity restitution (CVR) curves were generated and analyzed, and the propensity and characteristics of action potential duration (APD) alternans were investigated. In the 1D model, pacing stochasticity was found to sustain a moderating effect on the APDR curve by reducing its slope, rendering the tissue less arrhythmogenic. Moreover, stochasticity was found to be a significant antagonist to the development of concordant APD alternans. These effects were generally amplified with increased variability in the pacing cycle intervals. In addition, in the 2D tissue configuration, stochastic pacing exerted a protective antiarrhythmic effect by reducing the spatial APD heterogeneity and converting discordant APD alternans to concordant ones. These results suggest that high cardiac pacing stochasticity is likely to reduce the risk of cardiac arrhythmias in patients.
Collapse
Affiliation(s)
- Hila Dvir
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | | |
Collapse
|
11
|
Petkova-Kirova PS, London B, Salama G, Rasmusson RL, Bondarenko VE. Mathematical modeling mechanisms of arrhythmias in transgenic mouse heart overexpressing TNF-α. Am J Physiol Heart Circ Physiol 2011; 302:H934-52. [PMID: 22081697 DOI: 10.1152/ajpheart.00493.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transgenic mice overexpressing tumor necrosis factor-α (TNF-α mice) possess many of the features of human heart failure, such as dilated cardiomyopathy, impaired Ca(2+) handling, arrhythmias, and decreased survival. Although TNF-α mice have been studied extensively with a number of experimental methods, the mechanisms of heart failure are not completely understood. We created a mathematical model that reproduced experimentally observed changes in the action potential (AP) and Ca(2+) handling of isolated TNF-α mice ventricular myocytes. To study the contribution of the differences in ion currents, AP, Ca(2+) handling, and intercellular coupling to the development of arrhythmias in TNF-α mice, we further created several multicellular model tissues with combinations of wild-type (WT)/reduced gap junction conductance, WT/prolonged AP, and WT/decreased Na(+) current (I(Na)) amplitude. All model tissues were examined for susceptibility to Ca(2+) alternans, AP propagation block, and reentry. Our modeling results demonstrated that, similar to experimental data in TNF-α mice, Ca(2+) alternans in TNF-α tissues developed at longer basic cycle lengths. The greater susceptibility to Ca(2+) alternans was attributed to the prolonged AP, resulting in larger inactivation of I(Na), and to the decreased SR Ca(2+) uptake and corresponding smaller SR Ca(2+) load. Simulations demonstrated that AP prolongation induces an increased susceptibility to AP propagation block. Programmed stimulation of the model tissues with a premature impulse showed that reduced gap junction conduction increased the vulnerable window for initiation reentry, supporting the idea that reduced intercellular coupling is the major factor for reentrant arrhythmias in TNF-α mice.
Collapse
Affiliation(s)
- Polina S Petkova-Kirova
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
12
|
Bondarenko VE, Rasmusson RL. Transmural heterogeneity of repolarization and Ca2+ handling in a model of mouse ventricular tissue. Am J Physiol Heart Circ Physiol 2010; 299:H454-69. [PMID: 20525874 DOI: 10.1152/ajpheart.00907.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse hearts have a diversity of action potentials (APs) generated by the cardiac myocytes from different regions. Recent evidence shows that cells from the epicardial and endocardial regions of the mouse ventricle have a diversity in Ca(2+) handling properties as well as K(+) current expression. To examine the mechanisms of AP generation, propagation, and stability in transmurally heterogeneous tissue, we developed a comprehensive model of the mouse cardiac cells from the epicardial and endocardial regions of the heart. Our computer model simulates the following differences between epicardial and endocardial myocytes: 1) AP duration is longer in endocardial and shorter in epicardial myocytes, 2) diastolic and systolic intracellular Ca(2+) concentration and intracellular Ca(2+) concentration transients are higher in paced endocardial and lower in epicardial myocytes, 3) Ca(2+) release rate is about two times larger in endocardial than in epicardial myocytes, and 4) Na(+)/Ca(2+) exchanger rate is greater in epicardial than in endocardial myocytes. Isolated epicardial cells showed a higher threshold for stability of AP generation but more complex patterns of AP duration at fast pacing rates. AP propagation velocities in the model of two-dimensional tissue are close to those measured experimentally. Simulations show that heterogeneity of repolarization and Ca(2+) handling are sustained across the mouse ventricular wall. Stability analysis of AP propagation in the two-dimensional model showed the generation of Ca(2+) alternans and more complex transmurally heterogeneous irregular structures of repolarization and intracellular Ca(2+) transients at fast pacing rates.
Collapse
Affiliation(s)
- Vladimir E Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
13
|
Ziv O, Morales E, Song YK, Peng X, Odening KE, Buxton AE, Karma A, Koren G, Choi BR. Origin of complex behaviour of spatially discordant alternans in a transgenic rabbit model of type 2 long QT syndrome. J Physiol 2009; 587:4661-80. [PMID: 19675070 DOI: 10.1113/jphysiol.2009.175018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Enhanced dispersion of repolarization has been proposed as an important mechanism in long QT related arrhythmias. Dispersion can be dynamic and can be augmented with the occurrence of spatially out-of-phase action potential duration (APD) alternans (discordant alternans; DA). We investigated the role of tissue heterogeneity in generating DA using a novel transgenic rabbit model of type 2 long QT syndrome (LQT2). Littermate control (LMC) and LQT2 rabbit hearts (n = 5 for each) were retrogradely perfused and action potentials were mapped from the epicardial surface using di-4-ANEPPS and a high speed CMOS camera. Spatial dispersion (Delta APD and Delta slope of APD restitution) were both increased in LQT2 compared to LMC (Delta APD: 34 +/- 7 ms vs. 23 +/- 6 ms; Delta slope: 1.14 +/- 0.23 vs. 0.59 +/- 0.19). Onset of DA under a ramp stimulation protocol was seen at longer pacing cycle length (CL) in LQT2 compared to LMC hearts (206 +/- 24 ms vs. 156 +/- 5 ms). Nodal lines between regions with APD alternans out of phase from each other were correlated with conduction velocity (CV) alternation in LMC but not in LQT2 hearts. In LQT2 hearts, larger APD dispersion was associated with onset of DA at longer pacing CL. At shorter CLs, closer to ventricular fibrillation induction (VF), nodal lines in LQT2 (n = 2 out of 5) showed persistent complex beat-to-beat changes in nodal line formation of DA associated with competing contribution from CV restitution and tissue spatial heterogeneity, increasing vulnerability to conduction block. In conclusion, tissue heterogeneity plays a significant role in providing substrate for ventricular arrhythmia in LQT2 rabbits by facilitating DA onset and contributing to unstable nodal lines prone to reentry formation.
Collapse
Affiliation(s)
- Ohad Ziv
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Soubret A, Helmlinger G, Dumotier B, Bibas R, Georgieva A. Modeling and Simulation of Preclinical Cardiac Safety: Towards an Integrative Framework. Drug Metab Pharmacokinet 2009; 24:76-90. [DOI: 10.2133/dmpk.24.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|