1
|
Nolin-Lapalme A, Corbin D, Tastet O, Avram R, Hussin JG. Advancing Fairness in Cardiac Care: Strategies for Mitigating Bias in Artificial Intelligence Models Within Cardiology. Can J Cardiol 2024; 40:1907-1921. [PMID: 38735528 DOI: 10.1016/j.cjca.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
In the dynamic field of medical artificial intelligence (AI), cardiology stands out as a key area for its technological advancements and clinical application. In this review we explore the complex issue of data bias, specifically addressing those encountered during the development and implementation of AI tools in cardiology. We dissect the origins and effects of these biases, which challenge their reliability and widespread applicability in health care. Using a case study, we highlight the complexities involved in addressing these biases from a clinical viewpoint. The goal of this review is to equip researchers and clinicians with the practical knowledge needed to identify, understand, and mitigate these biases, advocating for the creation of AI solutions that are not just technologically sound, but also fair and effective for all patients.
Collapse
Affiliation(s)
- Alexis Nolin-Lapalme
- Department of Medicine, Montreal Heart Institute, Montreal, Quebec, Canada; Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada; Mila - Québec AI Institute, Montreal, Quebec, Canada; Heartwise (heartwise.ai), Montreal Heart Institute, Montreal, Quebec, Canada.
| | - Denis Corbin
- Department of Medicine, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Olivier Tastet
- Department of Medicine, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Robert Avram
- Department of Medicine, Montreal Heart Institute, Montreal, Quebec, Canada; Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada; Heartwise (heartwise.ai), Montreal Heart Institute, Montreal, Quebec, Canada
| | - Julie G Hussin
- Department of Medicine, Montreal Heart Institute, Montreal, Quebec, Canada; Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada; Mila - Québec AI Institute, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Crowdsourcing the Ideal Nipple-Areolar Complex Position for Chest Masculinization Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e3070. [PMID: 32983812 PMCID: PMC7489579 DOI: 10.1097/gox.0000000000003070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022]
Abstract
Chest masculinization surgery is increasing in prevalence. However, the ideal location of the nipple-areolar complex (NAC) is unknown. Our purpose was to determine the most aesthetically favorable male NAC position for use in chest masculinization through crowdsourcing.
Collapse
|
3
|
Mehrali M, Bagherifard S, Akbari M, Thakur A, Mirani B, Mehrali M, Hasany M, Orive G, Das P, Emneus J, Andresen TL, Dolatshahi‐Pirouz A. Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700931. [PMID: 30356969 PMCID: PMC6193179 DOI: 10.1002/advs.201700931] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/24/2018] [Indexed: 05/22/2023]
Abstract
At the crossroads of chemistry, electronics, mechanical engineering, polymer science, biology, tissue engineering, computer science, and materials science, electrical devices are currently being engineered that blend directly within organs and tissues. These sophisticated devices are mediators, recorders, and stimulators of electricity with the capacity to monitor important electrophysiological events, replace disabled body parts, or even stimulate tissues to overcome their current limitations. They are therefore capable of leading humanity forward into the age of cyborgs, a time in which human biology can be hacked at will to yield beings with abilities beyond their natural capabilities. The resulting advances have been made possible by the emergence of conformal and soft electronic materials that can readily integrate with the curvilinear, dynamic, delicate, and flexible human body. This article discusses the recent rapid pace of development in the field of cybernetics with special emphasis on the important role that flexible and electrically active materials have played therein.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Sara Bagherifard
- Department of Mechanical EngineeringPolitecnico di Milano20156MilanItaly
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Ashish Thakur
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Bahram Mirani
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Mohammad Mehrali
- Process and Energy DepartmentDelft University of TechnologyLeeghwaterstraat 392628CBDelftThe Netherlands
| | - Masoud Hasany
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Gorka Orive
- NanoBioCel GroupLaboratory of PharmaceuticsSchool of PharmacyUniversity of the Basque Country UPV/EHUPaseo de la Universidad 701006Vitoria‐GasteizSpain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)Vitoria‐Gasteiz28029Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria01007Spain
| | - Paramita Das
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Jenny Emneus
- Technical University of DenmarkDTU Nanotech2800KgsDenmark
| | - Thomas L. Andresen
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | | |
Collapse
|
4
|
Marcus F, Hughes T, Barrios P, Borgstrom M. Clinical location of the fourth and fifth intercostal spaces as a percent of the length of the sternum. J Electrocardiol 2017; 51:55-59. [PMID: 28579259 DOI: 10.1016/j.jelectrocard.2017.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To verify accurate placement of the precordial ECG leads by identifying the 4th and 5th intercostal spaces as a function of the length of the sternum. This should decrease the percentage of lead misplacement leading to misdiagnoses. METHODS The population consisted of patients and healthy volunteers. The proposed method compared palpation of the 4th and 5th intercostal spaces to a percentile of the sternal length. Location of the 4th and 5th intercostal space using a simple device was evaluated to assist in proper placement of the precordial leads to obtain accurate diagnosis. RESULTS The location of the 4th and 5th intercostal space is related to the length of the sternum. It is 77% of the sternal length that measures 15cm for the 4th intercostal space. The position of the V1 and V2 electrodes decreases to 57% when the sternal length is 26cm. Similar data was obtained to locate the 5th intercostal space with proper position of V4-V6 electrodes. Tables are provided to facilitate this process. An instrument was designed to measure the 4th and 5th intercostal space as a function of the sternal length. CONCLUSIONS The location of the 4th and 5th intercostal space is identified based on the length of the sternum.
Collapse
Affiliation(s)
- Frank Marcus
- Division of Cardiology, Sarver Heart Center, The University of Arizona College of Medicine, Tucson, AZ.
| | - Trina Hughes
- Division of Cardiology, Sarver Heart Center, The University of Arizona College of Medicine, Tucson, AZ
| | - Phillip Barrios
- Department of Diagnostic Cardiology, Banner University Medical Center, Tucson, AZ
| | - Mark Borgstrom
- Research Computing/UITS, The University of Arizona, Tucson, AZ
| |
Collapse
|