1
|
Kloosterman M, Boonstra MJ, van der Schaaf I, Loh P, van Dam PM. Modeling ventricular repolarization gradients in normal cases using the equivalent dipole layer. J Electrocardiol 2024; 82:27-33. [PMID: 38000150 DOI: 10.1016/j.jelectrocard.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/20/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Background Electrical activity underlying the T-wave is less well understood than the QRS-complex. This study investigated the relationship between normal T-wave morphology and the underlying ventricular repolarization gradients using the equivalent dipole layer (EDL). Methods Body-surface-potential-maps (BSPM, 67‑leads) were obtained in nine normal cases. Subject specific MRI-based anatomical heart/torso-models with electrode positions were created. The boundary element method was used to account for the volume conductor effects. To simulate the measured T-waves, the EDL was used to apply different ventricular repolarization gradients: a) transmural, b) interventricular c) apico-basal and d) all three gradients (a-c) combined. The combined gradient (d) was optimized using an inverse procedure (Levenberg-Marquardt). Correspondence between simulated and measured T-waves was assessed using correlation coefficient (CC) and relative difference (RD). Results Realistic T-waves were simulated if repolarization times of: (a) the epicardium were smaller than the endocardium; (b) the left ventricle were smaller than the right ventricle and (c) the apex increased towards the base. The apico-basal gradient resulted in the highest correspondence between measured and simulated T-waves (CC = 0.84(0.81-0.91);RD = 0.68(0.60-0.71)) compared to a transmural gradient (CC = 0.77(0.71-0.80);RD = 1.46(0.82-1.75)) and an interventricular gradient (CC = 0.71(0.67-0.80);RD = 0.85(0.75-0.87)). All three gradients combined further improved the correspondence between measured and simulated T-waves (CC = 0.83(0.82-0.89);RD = 0.60(0.51-0.63)), especially after optimization (CC = 0.96(0.94-0.98);RD = 0.27(0.22-0.34)). Conclusion The application of all repolarization gradients combined resulted in the largest agreement between simulated and measured T-waves, followed by the apico-basal repolarization gradient. With these findings, we will optimize our EDL-based inverse procedure to assess repolarization abnormalities.
Collapse
Affiliation(s)
- M Kloosterman
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands,.
| | - M J Boonstra
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - I van der Schaaf
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - P Loh
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands
| | - P M van Dam
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, the Netherlands,; ECG Excellence, Weijland 38, 2415 BC Nieuwerbrug, the Netherlands
| |
Collapse
|
2
|
Marashly Q, Najjar SN, Hahn J, Rector GJ, Khawaja M, Chelu MG. Innovations in ventricular tachycardia ablation. J Interv Card Electrophysiol 2023; 66:1499-1518. [PMID: 35879516 DOI: 10.1007/s10840-022-01311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Catheter ablation of ventricular arrhythmias (VAs) has evolved significantly over the past decade and is currently a well-established therapeutic option. Technological advances and improved understanding of VA mechanisms have led to tremendous innovations in VA ablation. The purpose of this review article is to provide an overview of current innovations in VA ablation. Mapping techniques, such as ultra-high density mapping, isochronal late activation mapping, and ripple mapping, have provided improved arrhythmogenic substrate delineation and potential procedural success while limiting duration of ablation procedure and potential hemodynamic compromise. Besides, more advanced mapping and ablation techniques such as epicardial and intramyocardial ablation approaches have allowed operators to more precisely target arrhythmogenic substrate. Moreover, advances in alternate energy sources, such as electroporation, as well as stereotactic radiation therapy have been proposed to be effective and safe. New catheters, such as the lattice and the saline-enhanced radiofrequency catheters, have been designed to provide deeper and more durable tissue ablation lesions compared to conventional catheters. Contact force optimization and baseline impedance modulation are important tools to optimize VT radiofrequency ablation and improve procedural success. Furthermore, advances in cardiac imaging, specifically cardiac MRI, have great potential in identifying arrhythmogenic substrate and evaluating ablation success. Overall, VA ablation has undergone significant advances over the past years. Innovations in VA mapping techniques, alternate energy source, new catheters, and utilization of cardiac imaging have great potential to improve overall procedural safety, hemodynamic stability, and procedural success.
Collapse
Affiliation(s)
- Qussay Marashly
- Division of Cardiology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Salim N Najjar
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Joshua Hahn
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Graham J Rector
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Muzamil Khawaja
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA
| | - Mihail G Chelu
- Division of Cardiology, Baylor College of Medicine, 7200 Cambridge Suite A6.137, MS: BCM621, Houston, TX, 77030, USA.
- Baylor St. Luke's Medical Center, Houston, USA.
- Texas Heart Institute, Houston, USA.
| |
Collapse
|
3
|
Kloosterman M, Boonstra MJ, Roudijk RW, Bourfiss M, van der Schaaf I, Velthuis BK, Eijsvogels TMH, Kirkels FP, van Dam PM, Loh P. Body surface potential mapping detects early disease onset in plakophilin-2-pathogenic variant carriers. Europace 2023; 25:euad197. [PMID: 37433034 PMCID: PMC10368448 DOI: 10.1093/europace/euad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023] Open
Abstract
AIMS Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a progressive inherited cardiac disease. Early detection of disease and risk stratification remain challenging due to heterogeneous phenotypic expression. The standard configuration of the 12 lead electrocardiogram (ECG) might be insensitive to identify subtle ECG abnormalities. We hypothesized that body surface potential mapping (BSPM) may be more sensitive to detect subtle ECG abnormalities. METHODS AND RESULTS We obtained 67 electrode BSPM in plakophilin-2 (PKP2)-pathogenic variant carriers and control subjects. Subject-specific computed tomography/magnetic resonance imaging based models of the heart/torso and electrode positions were created. Cardiac activation and recovery patterns were visualized with QRS- and STT-isopotential map series on subject-specific geometries to relate QRS-/STT-patterns to cardiac anatomy and electrode positions. To detect early signs of functional/structural heart disease, we also obtained right ventricular (RV) echocardiographic deformation imaging. Body surface potential mapping was obtained in 25 controls and 42 PKP2-pathogenic variant carriers. We identified five distinct abnormal QRS-patterns and four distinct abnormal STT-patterns in the isopotential map series of 31/42 variant carriers. Of these 31 variant carriers, 17 showed no depolarization or repolarization abnormalities in the 12 lead ECG. Of the 19 pre-clinical variant carriers, 12 had normal RV-deformation patterns, while 7/12 showed abnormal QRS- and/or STT-patterns. CONCLUSION Assessing depolarization and repolarization by BSPM may help in the quest for early detection of disease in variant carriers since abnormal QRS- and/or STT-patterns were found in variant carriers with a normal 12 lead ECG. Because electrical abnormalities were observed in subjects with normal RV-deformation patterns, we hypothesize that electrical abnormalities develop prior to functional/structural abnormalities in ARVC.
Collapse
Affiliation(s)
- Manon Kloosterman
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Machteld J Boonstra
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob W Roudijk
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mimount Bourfiss
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Iris van der Schaaf
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Birgitta K Velthuis
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Feddo P Kirkels
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter M van Dam
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- ECG-Excellence BV, Nieuwerbrug, The Netherlands
| | - Peter Loh
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Sedova KA, van Dam PM, Blahova M, Necasova L, Kautzner J. Localization of the ventricular pacing site from BSPM and standard 12-lead ECG: a comparison study. Sci Rep 2023; 13:9618. [PMID: 37316547 DOI: 10.1038/s41598-023-36768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Inverse ECG imaging methods typically require 32-250 leads to create body surface potential maps (BSPM), limiting their routine clinical use. This study evaluated the accuracy of PaceView inverse ECG method to localize the left or right ventricular (LV and RV, respectively) pacing leads using either a 99-lead BSPM or the 12-lead ECG. A 99-lead BSPM was recorded in patients with cardiac resynchronization therapy (CRT) during sinus rhythm and sequential LV/RV pacing. The non-contrast CT was performed to localize precisely both ECG electrodes and CRT leads. From a BSPM, nine signals were selected to obtain the 12-lead ECG. Both BSPM and 12-lead ECG were used to localize the RV and LV lead, and the localization error was calculated. Consecutive patients with dilated cardiomyopathy, previously implanted with a CRT device, were enrolled (n = 19). The localization error for the RV/LV lead was 9.0 [IQR 4.8-13.6] / 7.7 [IQR 0.0-10.3] mm using the 12-lead ECG and 9.1 [IQR 5.4-15.7] / 9.8 [IQR 8.6-13.1] mm for the BSPM. Thus, the noninvasive lead localization using the 12-lead ECG was accurate enough and comparable to 99-lead BSPM, potentially increasing the capability of 12-lead ECG for the optimization of the LV/RV pacing sites during CRT implant or for the most favorable programming.
Collapse
Affiliation(s)
- Ksenia A Sedova
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 27201, Kladno, Czech Republic.
| | - Peter M van Dam
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marie Blahova
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lucie Necasova
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
5
|
Fruelund PZ, Van Dam PM, Melgaard J, Sommer A, Lundbye-Christensen S, Søgaard P, Zaremba T, Graff C, Riahi S. Novel non-invasive ECG imaging method based on the 12-lead ECG for reconstruction of ventricular activation: A proof-of-concept study. Front Cardiovasc Med 2023; 10:1087568. [PMID: 36818351 PMCID: PMC9932809 DOI: 10.3389/fcvm.2023.1087568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Aim Current non-invasive electrocardiographic imaging (ECGi) methods are often based on complex body surface potential mapping, limiting the clinical applicability. The aim of this pilot study was to evaluate the ability of a novel non-invasive ECGi method, based on the standard 12-lead ECG, to localize initial site of ventricular activation in right ventricular (RV) paced patients. Validation of the method was performed by comparing the ECGi reconstructed earliest site of activation against the true RV pacing site determined from cardiac computed tomography (CT). Methods This was a retrospective study using data from 34 patients, previously implanted with a dual chamber pacemaker due to advanced atrioventricular block. True RV lead position was determined from analysis of a post-implant cardiac CT scan. The ECGi method was based on an inverse-ECG algorithm applying electrophysiological rules. The algorithm integrated information from an RV paced 12-lead ECG together with a CT-derived patient-specific heart-thorax geometric model to reconstruct a 3D electrical ventricular activation map. Results The mean geodesic localization error (LE) between the ECGi reconstructed initial site of activation and the RV lead insertion site determined from CT was 13.9 ± 5.6 mm. The mean RV endocardial surface area was 146.0 ± 30.0 cm2 and the mean circular LE area was 7.0 ± 5.2 cm2 resulting in a relative LE of 5.0 ± 4.0%. Conclusion We demonstrated a novel non-invasive ECGi method, based on the 12-lead ECG, that accurately localized the RV pacing site in relation to the ventricular anatomy.
Collapse
Affiliation(s)
- Patricia Zerlang Fruelund
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark,*Correspondence: Patricia Zerlang Fruelund,
| | - Peter M. Van Dam
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jacob Melgaard
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Anders Sommer
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Peter Søgaard
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Tomas Zaremba
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Claus Graff
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Sam Riahi
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
6
|
Boonstra MJ, Oostendorp TF, Roudijk RW, Kloosterman M, Asselbergs FW, Loh P, Van Dam PM. Incorporating structural abnormalities in equivalent dipole layer based ECG simulations. Front Physiol 2022; 13:1089343. [PMID: 36620207 PMCID: PMC9814485 DOI: 10.3389/fphys.2022.1089343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Electrical activity of the myocardium is recorded with the 12-lead ECG. ECG simulations can improve our understanding of the relation between abnormal ventricular activation in diseased myocardium and body surface potentials (BSP). However, in equivalent dipole layer (EDL)-based ECG simulations, the presence of diseased myocardium breaks the equivalence of the dipole layer. To simulate diseased myocardium, patches with altered electrophysiological characteristics were incorporated within the model. The relation between diseased myocardium and corresponding BSP was investigated in a simulation study. Methods: Activation sequences in normal and diseased myocardium were simulated and corresponding 64-lead BSP were computed in four models with distinct patch locations. QRS-complexes were compared using correlation coefficient (CC). The effect of different types of patch activation was assessed. Of one patient, simulated electrograms were compared to electrograms recorded during invasive electro-anatomical mapping. Results: Hundred-fifty-three abnormal activation sequences were simulated. Median QRS-CC of delayed versus dyssynchronous were significantly different (1.00 vs. 0.97, p < 0.001). Depending on the location of the patch, BSP leads were affected differently. Within diseased regions, fragmentation, low bipolar voltages and late potentials were observed in both recorded and simulated electrograms. Discussion: A novel method to simulate cardiomyopathy in EDL-based ECG simulations was established and evaluated. The new patch-based approach created a realistic relation between ECG waveforms and underlying activation sequences. Findings in the simulated cases were in agreement with clinical observations. With this method, our understanding of disease progression in cardiomyopathies may be further improved and used in advanced inverse ECG procedures.
Collapse
Affiliation(s)
- Machteld J Boonstra
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,*Correspondence: Machteld J Boonstra,
| | - Thom F Oostendorp
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
| | - Rob W Roudijk
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon Kloosterman
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, United Kingdom,Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| | - Peter Loh
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Peter M Van Dam
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,ECG Excellence BV, Nieuwerbrug aan den Rijn, Weijland, Netherlands
| |
Collapse
|
7
|
Chrispin J, Mazur A, Winterfield J, Nazeri A, Valderabanno M, Tandri H. Non-invasive localization of premature ventricular focus: A prospective multicenter study. J Electrocardiol 2022; 72:6-12. [DOI: 10.1016/j.jelectrocard.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 02/11/2022] [Indexed: 12/01/2022]
|
8
|
Pereira H, Niederer S, Rinaldi CA. Electrocardiographic imaging for cardiac arrhythmias and resynchronization therapy. Europace 2020; 22:euaa165. [PMID: 32754737 PMCID: PMC7544539 DOI: 10.1093/europace/euaa165] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Use of the 12-lead electrocardiogram (ECG) is fundamental for the assessment of heart disease, including arrhythmias, but cannot always reveal the underlying mechanism or the location of the arrhythmia origin. Electrocardiographic imaging (ECGi) is a non-invasive multi-lead ECG-type imaging tool that enhances conventional 12-lead ECG. Although it is an established technology, its continuous development has been shown to assist in arrhythmic activation mapping and provide insights into the mechanism of cardiac resynchronization therapy (CRT). This review addresses the validity, reliability, and overall feasibility of ECGi for use in a diverse range of arrhythmias. A systematic search limited to full-text human studies published in peer-reviewed journals was performed through Medline via PubMed, using various combinations of three key concepts: ECGi, arrhythmia, and CRT. A total of 456 studies were screened through titles and abstracts. Ultimately, 42 studies were included for literature review. Evidence to date suggests that ECGi can be used to provide diagnostic insights regarding the mechanistic basis of arrhythmias and the location of arrhythmia origin. Furthermore, ECGi can yield valuable information to guide therapeutic decision-making, including during CRT. Several studies have used ECGi as a diagnostic tool for atrial and ventricular arrhythmias. More recently, studies have tested the value of this technique in predicting outcomes of CRT. As a non-invasive method for assessing cardiovascular disease, particularly arrhythmias, ECGi represents a significant advancement over standard procedures in contemporary cardiology. Its full potential has yet to be fully explored.
Collapse
Affiliation(s)
- Helder Pereira
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
- Cardiac Physiology Services—Clinical Investigation Centre, Bupa Cromwell Hospital, London, UK
| | - Steven Niederer
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
| | - Christopher A Rinaldi
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, 4th Floor, Lambeth Wing, St. Thomas’ Hospital, Westminster Bridge Rd, London SE1 7EH, UK
- Cardiovascular Department, Guys and St Thomas NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Dusturia N, Choi SW, Song KS, Lim KM. Effect of myocardial heterogeneity on ventricular electro-mechanical responses: a computational study. Biomed Eng Online 2019; 18:23. [PMID: 30871548 PMCID: PMC6419335 DOI: 10.1186/s12938-019-0640-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The heart wall exhibits three layers of different thicknesses: the outer epicardium, mid-myocardium, and inner endocardium. Among these layers, the mid-myocardium is typically the thickest. As indicated by preliminary studies, heart-wall layers exhibit various characteristics with regard to electrophysiology, pharmacology, and pathology. Construction of an accurate three-dimensional (3D) model of the heart is important for predicting physiological behaviors. However, the wide variability of myocardial shapes and the unclear edges between the epicardium and soft tissues are major challenges in the 3D model segmentation approach for identifying the boundaries of the epicardium, mid-myocardium, and endocardium. Therefore, this results in possible variations in the heterogeneity ratios between the epicardium, mid-myocardium, and endocardium. The objective of this study was to observe the effects of different thickness ratios of the epicardium, mid-myocardium, and endocardium on cardiac arrhythmogenesis, reentry instability, and mechanical responses during arrhythmia. METHODS We used a computational method and simulated three heterogeneous ventricular models: Model 1 had the thickest M cell layer and thinnest epicardium and endocardium. Model 2 had intermediate layer thicknesses. Model 3 exhibited the thinnest mid-myocardium and thickest epicardium and endocardium. Electrical and mechanical simulations of the three heterogeneous models were performed under normal sinus rhythm and reentry conditions. RESULTS Model 1 exhibited the highest probability of terminating reentrant waves, and Model 3 exhibited to experience greater cardiac arrhythmia. In the reentry simulation, at 8 s, Model 3 generated the largest number of rotors (eight), while Models 1 and 2 produced five and seven rotors, respectively. There was no significant difference in the cardiac output obtained during the sinus rhythm. Under the reentry condition, the highest cardiac output was generated by Model 1 (19 mL/s), followed by Model 2 (9 mL/s) and Model 3 (7 mL/s). CONCLUSIONS A thicker mid-myocardium led to improvements in the pumping efficacy and contractility and reduced the probability of cardiac arrhythmia. Conversely, thinner M cell layers generated more unstable reentrant spiral waves and hindered the ventricular pumping.
Collapse
Affiliation(s)
- Nida Dusturia
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39253, Republic of Korea
| | - Seong Wook Choi
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Kwang Soup Song
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Ki Moo Lim
- Department of IT Convergence Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongbuk, 39253, Republic of Korea.
| |
Collapse
|
10
|
Misra S, van Dam P, Chrispin J, Assis F, Keramati A, Kolandaivelu A, Berger R, Tandri H. Initial validation of a novel ECGI system for localization of premature ventricular contractions and ventricular tachycardia in structurally normal and abnormal hearts. J Electrocardiol 2018; 51:801-808. [PMID: 30177316 DOI: 10.1016/j.jelectrocard.2018.05.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND View into Ventricular Onset (VIVO) is a novel ECGI system that uses 3D body surface imaging, myocardial CT/MRI, and 12‑lead ECG to localize earliest ventricular activation through analysis of simulated and clinical vector cardiograms. OBJECTIVE To evaluate the accuracy of VIVO for the localization of ventricular arrhythmias (VA). METHODS In twenty patients presenting for catheter ablation of VT [8] or PVC [12], VIVO was used to predict the site earliest activation using 12‑lead ECG of the VA. Results were compared to invasive electroanatomic mapping (EAM). RESULTS A total of 22 PVC/VT morphologies were analyzed using VIVO. VIVO accurately predicted the location of the VA in 11/13 PVC cases and 8/9 VT cases. VIVO correctly predicted right vs left ventricular foci in 20/22 cases. CONCLUSION View into Ventricular Onset (VIVO) can accurately predict earliest activation of VA, which could aid in catheter ablation, and should be studied further.
Collapse
Affiliation(s)
- Satish Misra
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States.
| | - Peter van Dam
- Cardiac Arrhythmia Center, University of California - Los Angeles, 100 UCLA Medical Plaza, Suite 660, Los Angeles, CA 90095, United States
| | - Jonathan Chrispin
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| | - Fabrizio Assis
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| | - Ali Keramati
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| | - Aravindan Kolandaivelu
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| | - Ronald Berger
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| | - Harikrishna Tandri
- Division of Cardiology, The Johns Hopkins University School of Medicine, 1800 Orleans St, Zayed 7125, Baltimore, MD 21287, United States
| |
Collapse
|
11
|
A new anatomical view on the vector cardiogram: The mean temporal-spatial isochrones. J Electrocardiol 2017; 50:732-738. [DOI: 10.1016/j.jelectrocard.2017.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Indexed: 02/07/2023]
|
12
|
Potyagaylo D, Dossel O, van Dam P. Influence of Modeling Errors on the Initial Estimate for Nonlinear Myocardial Activation Times Imaging Calculated With Fastest Route Algorithm. IEEE Trans Biomed Eng 2016; 63:2576-2584. [PMID: 27164568 DOI: 10.1109/tbme.2016.2561973] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Noninvasive reconstruction of cardiac electrical activity has a great potential to support clinical decision making, planning, and treatment. Recently, significant progress has been made in the estimation of the cardiac activation from body surface potential maps (BSPMs) using boundary element method (BEM) with the equivalent double layer (EDL) as a source model. In this formulation, noninvasive assessment of activation times results in a nonlinear optimization problem with an initial estimate calculated with the fastest route algorithm (FRA). Each FRA-simulated activation sequence is converted into the ECG. The best initialization is determined by the sequence providing the highest correlation between predicted and measured potentials. We quantitatively assess the effects of the forward modeling errors on the FRA-based initialization. We present three simulation setups to investigate the effects of volume conductor model simplifications, neglecting the cardiac anisotropy and geometrical errors on the localization of ectopic beats starting on the ventricular surface. For the analysis, 12-lead ECG and 99 electrodes BSPM system were used. The areas in the heart exposing the largest localization errors were volume conductor model and electrode configuration specific with an average error <10 mm. The results show the robustness of the FRA-based initialization with respect to the considered modeling errors.
Collapse
|