1
|
Jenkins EV, Dharmaprani D, Schopp M, Quah JX, Tiver K, Mitchell L, Xiong F, Aguilar M, Pope K, Akar FG, Roney CH, Niederer SA, Nattel S, Nash MP, Clayton RH, Ganesan AN. The inspection paradox: An important consideration in the evaluation of rotor lifetimes in cardiac fibrillation. Front Physiol 2022; 13:920788. [PMID: 36148313 PMCID: PMC9486478 DOI: 10.3389/fphys.2022.920788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Objective: Renewal theory is a statistical approach to model the formation and destruction of phase singularities (PS), which occur at the pivots of spiral waves. A common issue arising during observation of renewal processes is an inspection paradox, due to oversampling of longer events. The objective of this study was to characterise the effect of a potential inspection paradox on the perception of PS lifetimes in cardiac fibrillation. Methods: A multisystem, multi-modality study was performed, examining computational simulations (Aliev-Panfilov (APV) model, Courtmanche-Nattel model), experimentally acquired optical mapping Atrial and Ventricular Fibrillation (AF/VF) data, and clinically acquired human AF and VF. Distributions of all PS lifetimes across full epochs of AF, VF, or computational simulations, were compared with distributions formed from lifetimes of PS existing at 10,000 simulated commencement timepoints. Results: In all systems, an inspection paradox led towards oversampling of PS with longer lifetimes. In APV computational simulations there was a mean PS lifetime shift of +84.9% (95% CI, ± 0.3%) (p < 0.001 for observed vs overall), in Courtmanche-Nattel simulations of AF +692.9% (95% CI, ±57.7%) (p < 0.001), in optically mapped rat AF +374.6% (95% CI, ± 88.5%) (p = 0.052), in human AF mapped with basket catheters +129.2% (95% CI, ±4.1%) (p < 0.05), human AF-HD grid catheters 150.8% (95% CI, ± 9.0%) (p < 0.001), in optically mapped rat VF +171.3% (95% CI, ±15.6%) (p < 0.001), in human epicardial VF 153.5% (95% CI, ±15.7%) (p < 0.001). Conclusion: Visual inspection of phase movies has the potential to systematically oversample longer lasting PS, due to an inspection paradox. An inspection paradox is minimised by consideration of the overall distribution of PS lifetimes.
Collapse
Affiliation(s)
- Evan V Jenkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Dhani Dharmaprani
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Madeline Schopp
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jing Xian Quah
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | - Kathryn Tiver
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | - Lewis Mitchell
- School of Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Feng Xiong
- Montréal Heart Institute and Université de Montréal, Montréal, QC, Canada
| | - Martin Aguilar
- Montréal Heart Institute and Université de Montréal, Montréal, QC, Canada
| | - Kenneth Pope
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Fadi G Akar
- School of Medicine, Yale University, New Haven, CT, United States
| | - Caroline H Roney
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom
| | - Stanley Nattel
- Montréal Heart Institute and Université de Montréal, Montréal, QC, Canada
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Richard H Clayton
- Insigneo Institute for in Silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Anand N Ganesan
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
2
|
Quah JX, Dharmaprani D, Lahiri A, Tiver K, Ganesan AN. Reconceptualising Atrial Fibrillation Using Renewal Theory: A Novel Approach to the Assessment of Atrial Fibrillation Dynamics. Arrhythm Electrophysiol Rev 2021; 10:77-84. [PMID: 34401179 PMCID: PMC8335853 DOI: 10.15420/aer.2020.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
Despite a century of research, the mechanisms of AF remain unresolved. A universal motif within AF research has been unstable re-entry, but this remains poorly characterised, with competing key conceptual paradigms of multiple wavelets and more driving rotors. Understanding the mechanisms of AF is clinically relevant, especially with regard to treatment and ablation of the more persistent forms of AF. Here, the authors outline the surprising but reproducible finding that unstable re-entrant circuits are born and destroyed at quasi-stationary rates, a finding based on a branch of mathematics known as renewal theory. Renewal theory may be a way to potentially unify the multiple wavelet and rotor theories. The renewal rate constants are potentially attractive because they are temporally stable parameters of a defined probability distribution (the exponential distribution) and can be estimated with precision and accuracy due to the principles of renewal theory. In this perspective review, this new representational architecture for AF is explained and placed into context, and the clinical and mechanistic implications are discussed.
Collapse
Affiliation(s)
- Jing Xian Quah
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | - Dhani Dharmaprani
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia.,College of Science and Engineering, Flinders University of South Australia, Adelaide, SA, Australia
| | - Anandaroop Lahiri
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | - Kathryn Tiver
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | - Anand N Ganesan
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
3
|
Schopp M, Dharmaprani D, Kuklik P, Quah J, Lahiri A, Tiver K, Meyer C, Willems S, McGavigan AD, Ganesan AN. Spatial concentration and distribution of phase singularities in human atrial fibrillation: Insights for the AF mechanism. J Arrhythm 2021; 37:922-930. [PMID: 34386118 PMCID: PMC8339121 DOI: 10.1002/joa3.12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is characterized by the repetitive regeneration of unstable rotational events, the pivot of which are known as phase singularities (PSs). The spatial concentration and distribution of PSs have not been systematically investigated using quantitative statistical approaches. OBJECTIVES We utilized a geospatial statistical approach to determine the presence of local spatial concentration and global clustering of PSs in biatrial human AF recordings. METHODS 64-electrode conventional basket (~5 min, n = 18 patients, persistent AF) recordings were studied. Phase maps were produced using a Hilbert-transform based approach. PSs were characterized spatially using the following approaches: (i) local "hotspots" of high phase singularity (PS) concentration using Getis-Ord Gi* (Z ≥ 1.96, P ≤ .05) and (ii) global spatial clustering using Moran's I (inverse distance matrix). RESULTS Episodes of AF were analyzed from basket catheter recordings (H: 41 epochs, 120 000 s, n = 18 patients). The Getis-Ord Gi* statistic showed local PS hotspots in 12/41 basket recordings. As a metric of spatial clustering, Moran's I showed an overall mean of 0.033 (95% CI: 0.0003-0.065), consistent with the notion of complete spatial randomness. CONCLUSION Using a systematic, quantitative geospatial statistical approach, evidence for the existence of spatial concentrations ("hotspots") of PSs were detectable in human AF, along with evidence of spatial clustering. Geospatial statistical approaches offer a new approach to map and ablate PS clusters using substrate-based approaches.
Collapse
Affiliation(s)
- Madeline Schopp
- College of Science and EngineeringFlinders University of South AustraliaAdelaideSAAustralia
| | - Dhani Dharmaprani
- College of Science and EngineeringFlinders University of South AustraliaAdelaideSAAustralia
- College of Medicine and Public HealthFlinders University of South AustraliaAdelaideSAAustralia
| | - Pawel Kuklik
- Department of CardiologyUniversity Medical CentreHamburgGermany
| | - Jing Quah
- College of Medicine and Public HealthFlinders University of South AustraliaAdelaideSAAustralia
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSAAustralia
| | - Anandaroop Lahiri
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSAAustralia
| | - Kathryn Tiver
- College of Medicine and Public HealthFlinders University of South AustraliaAdelaideSAAustralia
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSAAustralia
| | - Christian Meyer
- Department of CardiologyUniversity Medical CentreHamburgGermany
| | - Stephan Willems
- Department of CardiologyUniversity Medical CentreHamburgGermany
| | - Andrew D. McGavigan
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSAAustralia
| | - Anand N. Ganesan
- College of Medicine and Public HealthFlinders University of South AustraliaAdelaideSAAustralia
- Department of Cardiovascular MedicineFlinders Medical CentreAdelaideSAAustralia
| |
Collapse
|
4
|
Roney CH, Wit AL, Peters NS. Challenges Associated with Interpreting Mechanisms of AF. Arrhythm Electrophysiol Rev 2020; 8:273-284. [PMID: 32685158 PMCID: PMC7358959 DOI: 10.15420/aer.2019.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/18/2019] [Indexed: 01/08/2023] Open
Abstract
Determining optimal treatment strategies for complex arrhythmogenesis in AF is confounded by the lack of consensus regarding the mechanisms causing AF. Studies report different mechanisms for AF, ranging from hierarchical drivers to anarchical multiple activation wavelets. Differences in the assessment of AF mechanisms are likely due to AF being recorded across diverse models using different investigational tools, spatial scales and clinical populations. The authors review different AF mechanisms, including anatomical and functional re-entry, hierarchical drivers and anarchical multiple wavelets. They then describe different cardiac mapping techniques and analysis tools, including activation mapping, phase mapping and fibrosis identification. They explain and review different data challenges, including differences between recording devices in spatial and temporal resolutions, spatial coverage and recording surface, and report clinical outcomes using different data modalities. They suggest future research directions for investigating the mechanisms underlying human AF.
Collapse
Affiliation(s)
- Caroline H Roney
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
| | - Andrew L Wit
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, NY, US
| | - Nicholas S Peters
- Imperial Centre for Cardiac Engineering, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
5
|
Dharmaprani D, Schopp M, Kuklik P, Chapman D, Lahiri A, Dykes L, Xiong F, Aguilar M, Strauss B, Mitchell L, Pope K, Meyer C, Willems S, Akar FG, Nattel S, McGavigan AD, Ganesan AN. Renewal Theory as a Universal Quantitative Framework to Characterize Phase Singularity Regeneration in Mammalian Cardiac Fibrillation. Circ Arrhythm Electrophysiol 2019; 12:e007569. [PMID: 31813270 DOI: 10.1161/circep.119.007569] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Despite a century of research, no clear quantitative framework exists to model the fundamental processes responsible for the continuous formation and destruction of phase singularities (PS) in cardiac fibrillation. We hypothesized PS formation/destruction in fibrillation could be modeled as self-regenerating Poisson renewal processes, producing exponential distributions of interevent times governed by constant rate parameters defined by the prevailing properties of each system. METHODS PS formation/destruction were studied in 5 systems: (1) human persistent atrial fibrillation (n=20), (2) tachypaced sheep atrial fibrillation (n=5), (3) rat atrial fibrillation (n=4), (5) rat ventricular fibrillation (n=11), and (5) computer-simulated fibrillation. PS time-to-event data were fitted by exponential probability distribution functions computed using maximum entropy theory, and rates of PS formation and destruction (λf/λd) determined. A systematic review was conducted to cross-validate with source data from literature. RESULTS In all systems, PS lifetime and interformation times were consistent with underlying Poisson renewal processes (human: λf, 4.2%/ms±1.1 [95% CI, 4.0-5.0], λd, 4.6%/ms±1.5 [95% CI, 4.3-4.9]; sheep: λf, 4.4%/ms [95% CI, 4.1-4.7], λd, 4.6%/ms±1.4 [95% CI, 4.3-4.8]; rat atrial fibrillation: λf, 33%/ms±8.8 [95% CI, 11-55], λd, 38%/ms [95% CI, 22-55]; rat ventricular fibrillation: λf, 38%/ms±24 [95% CI, 22-55], λf, 46%/ms±21 [95% CI, 31-60]; simulated fibrillation λd, 6.6-8.97%/ms [95% CI, 4.1-6.7]; R2≥0.90 in all cases). All PS distributions identified through systematic review were also consistent with an underlying Poisson renewal process. CONCLUSIONS Poisson renewal theory provides an evolutionarily preserved universal framework to quantify formation and destruction of rotational events in cardiac fibrillation.
Collapse
Affiliation(s)
- Dhani Dharmaprani
- College of Medicine and Public Health (D.D., D.C., A.D.M., A.N.G.), Flinders University of South Australia, Adelaide, SA, Australia.,College of Science and Engineering (D.D., M.S., K.P.), Flinders University of South Australia, Adelaide, SA, Australia
| | - Madeline Schopp
- College of Science and Engineering (D.D., M.S., K.P.), Flinders University of South Australia, Adelaide, SA, Australia
| | - Pawel Kuklik
- Department of Cardiology, Asklepios Clinic St Georg (P.K., C.M.)
| | - Darius Chapman
- College of Medicine and Public Health (D.D., D.C., A.D.M., A.N.G.), Flinders University of South Australia, Adelaide, SA, Australia
| | - Anandaroop Lahiri
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia (A.L., L.D., A.D.M., A.N.G.)
| | - Lukah Dykes
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia (A.L., L.D., A.D.M., A.N.G.)
| | - Feng Xiong
- Department of Medicine, Montréal Heart Institute and Université de Montréal, Canada (F.X., M.A., S.N.)
| | - Martin Aguilar
- Department of Medicine, Montréal Heart Institute and Université de Montréal, Canada (F.X., M.A., S.N.)
| | | | - Lewis Mitchell
- School of Mathematical Sciences, University of Adelaide, SA, Australia (L.M.)
| | - Kenneth Pope
- College of Science and Engineering (D.D., M.S., K.P.), Flinders University of South Australia, Adelaide, SA, Australia
| | - Christian Meyer
- Department of Cardiology, Asklepios Clinic St Georg (P.K., C.M.)
| | - Stephan Willems
- Department of Cardiology, University Medical Centre, Hamburg, Germany (S.W.)
| | - Fadi G Akar
- Icahn School of Medicine, Mount Sinai, NY (B.S., F.G.A.)
| | - Stanley Nattel
- Department of Medicine, Montréal Heart Institute and Université de Montréal, Canada (F.X., M.A., S.N.)
| | - Andrew D McGavigan
- College of Medicine and Public Health (D.D., D.C., A.D.M., A.N.G.), Flinders University of South Australia, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia (A.L., L.D., A.D.M., A.N.G.)
| | - Anand N Ganesan
- College of Medicine and Public Health (D.D., D.C., A.D.M., A.N.G.), Flinders University of South Australia, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia (A.L., L.D., A.D.M., A.N.G.)
| |
Collapse
|