1
|
Hamzaid NA, Hamdan PNF, Teoh MXH, Abd Razak NA, Hasnan N, Davis GM. Mechanomyography reflects the changes in oxygenated hemoglobin during electrically evoked cycling in individuals with spinal cord injury. Artif Organs 2024; 48:1264-1274. [PMID: 38884389 DOI: 10.1111/aor.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Functional electrical stimulation (FES) cycling has been reported to enhance muscle strength and improve muscle fatigue resistance after spinal cord injury (SCI). Despite its proposed benefits, the quantification of muscle fatigue during FES cycling remains poorly documented. This study sought to quantify the relationship between the vibrational performance of electrically-evoked muscles measured through mechanomyography (MMG) and its oxidative metabolism through near-infrared spectroscopy (NIRS) characteristics during FES cycling in fatiguing paralyzed muscles in individuals with SCI. METHODS Six individuals with SCI participated in the study. They performed 30 min of FES cycling with MMG and NIRS sensors on their quadriceps throughout the cycling, and the signals were analyzed. RESULTS A moderate negative correlation was found between MMG root mean square (RMS) and oxyhaemoglobin (O2Hb) [r = -0.38, p = 0.003], and between MMG RMS and total hemoglobin (tHb) saturation [r = -0.31, p = 0.017]. Statistically significant differences in MMG RMS, O2Hb, and tHb saturation occurred during pre- and post-fatigue of FES cycling (p < 0.05). CONCLUSIONS MMG RMS was negatively associated with O2Hb and muscle oxygen derived from NIRS. MMG and NIRS sensors showed good inter-correlations, suggesting a promising use of MMG for characterizing metabolic fatigue at the muscle oxygenation level during FES cycling in individuals with SCI.
Collapse
Affiliation(s)
- Nur Azah Hamzaid
- Biomechatronics and Neuroprosthetics Lab, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Puteri Nur Farhana Hamdan
- Biomechatronics and Neuroprosthetics Lab, Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mira Xiao-Hui Teoh
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nasrul Anuar Abd Razak
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Glen M Davis
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- Discipline of Exercise and Sports Science, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Brandenberger KJ, Rawdon CL, Armstrong E, Lonowski J, Cooper L. A non-volitional skeletal muscle endurance test measures functional changes associated with impaired blood flow. J Rehabil Assist Technol Eng 2023; 10:20556683231164339. [PMID: 37035543 PMCID: PMC10074637 DOI: 10.1177/20556683231164339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: An electrically stimulated intermittent fatigue test using mechanomyography was recently proposed as a possible tool for detecting clinically relevant changes in muscle function. This study was designed to determine whether the proposed test can detect additional fatigue when it should be present. Methods: Subjects (n = 10) underwent two trials each (occluded and normal blood flow) with a standardized fatigue protocol on the Ankle Dorsiflexors (AD) and Wrist Extensors (WE) using a clinical electrical stimulator. Results: Mean normalized twitch acceleration was strongly predictive of mean normalized torque (R 2 = 0.828). The WE experienced lower twitch magnitudes throughout the tourniquet trial (10.81 ± 1.25 m/s2) compared to normal blood flow (18.05 ± 1.06 m/s2). The AD twitches were overall reduced in the tourniquet trial (3.87 ± 0.48 m/s2) compared with the control trial (8.57 ± 0.91 m/s2). Conclusion: Occluding blood flow to a muscle should cause greater muscle fatigue. The ability to detect reduced contraction magnitudes during an electrically stimulated fatigue protocol resulting from low blood flow suggests the proposed test may be capable of detecting clinically relevant muscle deficits.
Collapse
Affiliation(s)
- Kyle J Brandenberger
- Departments of Respiratory Therapy &
Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Chris L Rawdon
- Department of Exercise Science, Mercer University, Macon, GA, USA
- Chris L Rawdon, Department of Exercise Science,
Mercer University, Macon, GA 31207, USA.
| | - Erica Armstrong
- Departments of Respiratory Therapy &
Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Jacob Lonowski
- Departments of Respiratory Therapy &
Physical Therapy, Georgia State University, Atlanta, GA, USA
| | - Lakee’dra Cooper
- Departments of Respiratory Therapy &
Physical Therapy, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
3
|
Gelenitis K, Foglyano K, Lombardo L, McDaniel J, Triolo R. Motorless cadence control of standard and low duty cycle-patterned neural stimulation intensity extends muscle-driven cycling output after paralysis. J Neuroeng Rehabil 2022; 19:85. [PMID: 35945575 PMCID: PMC9360711 DOI: 10.1186/s12984-022-01064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
Background Stimulation-driven exercise is often limited by rapid fatigue of the activated muscles. Selective neural stimulation patterns that decrease activated fiber overlap and/or duty cycle improve cycling exercise duration and intensity. However, unequal outputs from independently activated fiber populations may cause large discrepancies in power production and crank angle velocity among pedal revolutions. Enforcing a constant cadence through feedback control of stimulus levels may address this issue and further improve endurance by targeting a submaximal but higher than steady-state exercise intensity. Methods Seven participants with paralysis cycled using standard cadence-controlled stimulation (S-Cont). Four of those participants also cycled with a low duty cycle (carousel) cadence-controlled stimulation scheme (C-Cont). S-Cont and C-Cont patterns were compared with conventional maximal stimulation (S-Max). Outcome measures include total work (W), end power (Pend), power fluctuation (PFI), charge accumulation (Q) and efficiency (η). Physiological measurements of muscle oxygenation (SmO2) and heart rate were also collected with select participants. Results At least one cadence-controlled stimulation pattern (S-Cont or C-Cont) improved Pend over S-Max in all participants and increased W in three participants. Both controlled patterns increased Q and η and reduced PFI compared with S-Max and prior open-loop studies. S-Cont stimulation also delayed declines in SmO2 and increased heart rate in one participant compared with S-Max. Conclusions Cadence-controlled selective stimulation improves cycling endurance and increases efficiency over conventional stimulation by incorporating fiber groups only as needed to maintain a desired exercise intensity. Closed-loop carousel stimulation also successfully reduces power fluctuations relative to previous open-loop efforts, which will enable neuroprosthesis recipients to better take advantage of duty cycle reducing patterns.
Collapse
Affiliation(s)
- Kristen Gelenitis
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA.
| | - Kevin Foglyano
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA
| | - Lisa Lombardo
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA
| | - John McDaniel
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA.,Kent State University, 800 E Summit St, Kent, OH, 44240, USA
| | - Ronald Triolo
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA.,Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| |
Collapse
|
4
|
S. Baptista R, C. C. Moreira M, D. M. Pinheiro L, R. Pereira T, G. Carmona G, P. D. Freire J, A. I. Bastos J, Padilha Lanari Bo A. User-centered design and spatially-distributed sequential electrical stimulation in cycling for individuals with paraplegia. J Neuroeng Rehabil 2022; 19:45. [PMID: 35527249 PMCID: PMC9080548 DOI: 10.1186/s12984-022-01014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
In this work, we share the enhancements made in our system to take part in the CYBATHLON 2020 Global Edition Functional Electrical Stimulation (FES) Bike Race. Among the main improvements, firstly an overhaul, an overhaul of the system and user interface developed with User-centered design principles with remote access to enable telerehabilitation. Secondly, the implementation and experimental comparison between the traditional single electrode stimulation (SES) and spatially distributed sequential stimulation (SDSS) applied for FES Cycling.
Methods
We report on the main aspects of the developed system. To evaluate the user perception of the system, we applied a System Usability Scale (SUS) questionnaire. In comparing SDSS and SES, we collected data from one subject in four sessions, each simulating one race in the CYBATHLON format.
Results
User perception measured with SUS indicates a positive outcome in the developed system. The SDSS trials were superior in absolute and average values to SES regarding total distance covered and velocity. We successfully competed in the CYBATHLON 2020 Global Edition, finishing in 6th position in the FES Bike Race category.
Conclusions
The CYBATHLON format induced us to put the end-user in the center of our system design principle, which was well perceived. However, further improvements are required if the intention is to progress to a commercial product. FES Cycling performance in SDSS trials was superior when compared to SES trials, indicating that this technique may enable faster and possibly longer FES cycling sessions for individuals with paraplegia. More extensive studies are required to assess these aspects.
Collapse
|
5
|
Ye G, Theventhiran P, Masani K. Effect of Spatially Distributed Sequential Stimulation on Fatigue in Functional Electrical Stimulation Rowing. IEEE Trans Neural Syst Rehabil Eng 2022; 30:999-1008. [DOI: 10.1109/tnsre.2022.3166710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Ye G, Ali SS, Bergquist AJ, Popovic MR, Masani K. A Generic Sequential Stimulation Adapter for Reducing Muscle Fatigue during Functional Electrical Stimulation. SENSORS 2021; 21:s21217248. [PMID: 34770555 PMCID: PMC8587998 DOI: 10.3390/s21217248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/24/2022]
Abstract
Background: Clinical applications of conventional functional electrical stimulation (FES) administered via a single electrode are limited by rapid onset neuromuscular fatigue. “Sequential” (SEQ) stimulation, involving the rotation of pulses between multiple active electrodes, has been shown to reduce fatigue compared to conventional FES. However, there has been limited adoption of SEQ in research and clinical settings. Methods: The SEQ adapter is a small, battery-powered device that transforms the output of any commercially available electrical stimulator into SEQ stimulation. We examined the output of the adaptor across a range of clinically relevant stimulation pulse parameters to verify the signal integrity preservation ability of the SEQ adapter. Pulse frequency, amplitude, and duration were varied across discrete states between 4 and 200 Hz, 10 and100 mA, and 50 and 2000 μs, respectively. Results: A total of 420 trials were conducted, with 80 stimulation pulses per trial. The SEQ adapter demonstrated excellent preservation of signal integrity, matching the pulse characteristics of the originating stimulator within 1% error. The SEQ adapter operates as expected at pulse frequencies up to 160 Hz, failing at a frequency of 200 Hz. Conclusion: The SEQ adapter represents an effective and low-cost solution to increase the utilization of SEQ in existing rehabilitation paradigms.
Collapse
Affiliation(s)
- Gongkai Ye
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON M4G 3V9, Canada; (G.Y.); (A.J.B.); (M.R.P.)
| | - Saima S. Ali
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada;
| | - Austin J. Bergquist
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON M4G 3V9, Canada; (G.Y.); (A.J.B.); (M.R.P.)
| | - Milos R. Popovic
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON M4G 3V9, Canada; (G.Y.); (A.J.B.); (M.R.P.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Kei Masani
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON M4G 3V9, Canada; (G.Y.); (A.J.B.); (M.R.P.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Correspondence:
| |
Collapse
|
7
|
Blazevich AJ, Collins DF, Millet GY, Vaz MA, Maffiuletti NA. Enhancing Adaptations to Neuromuscular Electrical Stimulation Training Interventions. Exerc Sport Sci Rev 2021; 49:244-252. [PMID: 34107505 PMCID: PMC8460078 DOI: 10.1249/jes.0000000000000264] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Neuromuscular electrical stimulation (NMES) applied to skeletal muscles is an effective rehabilitation and exercise training modality. However, the relatively low muscle force and rapid muscle fatigue induced by NMES limit the stimulus provided to the neuromuscular system and subsequent adaptations. We hypothesize that adaptations to NMES will be enhanced by the use of specific stimulation protocols and adjuvant interventions.
Collapse
Affiliation(s)
- Anthony J. Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - David F. Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Guillaume Y. Millet
- Université de Lyon, UJM, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne
- Institut Universitaire de France (IUF), Paris, France
| | - Marco A. Vaz
- Laboratório de Pesquisa do Exercício (LAPEX), Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | |
Collapse
|
8
|
Gelenitis K, Foglyano K, Lombardo L, Triolo R. Selective neural stimulation methods improve cycling exercise performance after spinal cord injury: a case series. J Neuroeng Rehabil 2021; 18:117. [PMID: 34301286 PMCID: PMC8301730 DOI: 10.1186/s12984-021-00912-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exercise after paralysis can help prevent secondary health complications, but achieving adequate exercise volumes and intensities is difficult with loss of motor control. Existing electrical stimulation-driven cycling systems involve the paralyzed musculature but result in rapid force decline and muscle fatigue, limiting their effectiveness. This study explores the effects of selective stimulation patterns delivered through multi-contact nerve cuff electrodes on functional exercise output, with the goal of increasing work performed and power maintained within each bout of exercise. METHODS Three people with spinal cord injury and implanted stimulation systems performed cycling trials using conventional (S-Max), low overlap (S-Low), low duty cycle (C-Max), and/or combined low overlap and low duty cycle (C-Low) stimulation patterns. Outcome measures include total work (W), end power (Pend), power fluctuation indices (PFI), charge accumulation (Q), and efficiency (η). Mann-Whitney tests were used for statistical comparisons of W and Pend between a selective pattern and S-Max. Welch's ANOVAs were used to evaluate differences in PFIs among all patterns tested within a participant (n ≥ 90 per stimulation condition). RESULTS At least one selective pattern significantly (p < 0.05) increased W and Pend over S-Max in each participant. All selective patterns also reduced Q and increased η compared with S-Max for all participants. C-Max significantly (p < 0.01) increased PFI, indicating a decrease in ride smoothness with low duty cycle patterns. CONCLUSIONS Selective stimulation patterns can increase work performed and power sustained by paralyzed muscles prior to fatigue with increased stimulation efficiency. While still effective, low duty cycle patterns can cause inconsistent power outputs each pedal stroke, but this can be managed by utilizing optimized stimulation levels. Increasing work and sustained power each exercise session has the potential to ultimately improve the physiological benefits of stimulation-driven exercise.
Collapse
Affiliation(s)
- Kristen Gelenitis
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| | - Kevin Foglyano
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA
| | - Lisa Lombardo
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA
| | - Ronald Triolo
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland VA Medical Center, 10701 East Blvd, Cleveland, OH, 44106, USA
| |
Collapse
|
9
|
Uwamahoro R, Sundaraj K, Subramaniam ID. Assessment of muscle activity using electrical stimulation and mechanomyography: a systematic review. Biomed Eng Online 2021; 20:1. [PMID: 33390158 PMCID: PMC7780389 DOI: 10.1186/s12938-020-00840-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/11/2020] [Indexed: 11/10/2022] Open
Abstract
This research has proved that mechanomyographic (MMG) signals can be used for evaluating muscle performance. Stimulation of the lost physiological functions of a muscle using an electrical signal has been determined crucial in clinical and experimental settings in which voluntary contraction fails in stimulating specific muscles. Previous studies have already indicated that characterizing contractile properties of muscles using MMG through neuromuscular electrical stimulation (NMES) showed excellent reliability. Thus, this review highlights the use of MMG signals on evaluating skeletal muscles under electrical stimulation. In total, 336 original articles were identified from the Scopus and SpringerLink electronic databases using search keywords for studies published between 2000 and 2020, and their eligibility for inclusion in this review has been screened using various inclusion criteria. After screening, 62 studies remained for analysis, with two additional articles from the bibliography, were categorized into the following: (1) fatigue, (2) torque, (3) force, (4) stiffness, (5) electrode development, (6) reliability of MMG and NMES approaches, and (7) validation of these techniques in clinical monitoring. This review has found that MMG through NMES provides feature factors for muscle activity assessment, highlighting standardized electromyostimulation and MMG parameters from different experimental protocols. Despite the evidence of mathematical computations in quantifying MMG along with NMES, the requirement of the processing speed, and fluctuation of MMG signals influence the technique to be prone to errors. Interestingly, although this review does not focus on machine learning, there are only few studies that have adopted it as an alternative to statistical analysis in the assessment of muscle fatigue, torque, and force. The results confirm the need for further investigation on the use of sophisticated computations of features of MMG signals from electrically stimulated muscles in muscle function assessment and assistive technology such as prosthetics control.
Collapse
Affiliation(s)
- Raphael Uwamahoro
- Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Tunggal, Malaysia
- Regional Centre of Excellence in Biomedical Engineering and E-Health, University of Rwanda, PO BOX 4285, Kigali, Rwanda
| | - Kenneth Sundaraj
- Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Tunggal, Malaysia.
| | - Indra Devi Subramaniam
- Pusat Bahasa & Pembangunan Insan, Universiti Teknikal Malaysia Melaka, Tunggal, Malaysia
| |
Collapse
|
10
|
A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance. Exp Neurol 2020; 328:113274. [DOI: 10.1016/j.expneurol.2020.113274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 11/20/2022]
|
11
|
Sijobert B, Le Guillou R, Fattal C, Azevedo Coste C. FES-Induced Cycling in Complete SCI: A Simpler Control Method Based on Inertial Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4268. [PMID: 31581489 PMCID: PMC6806329 DOI: 10.3390/s19194268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
This article introduces a novel approach for a functional electrical stimulation (FES) controller intended for FES-induced cycling based on inertial measurement units (IMUs). This study aims at simplifying the design of electrical stimulation timing patterns while providing a method that can be adapted to different users and devices. In most of studies and commercial devices, the crank angle is used as an input to trigger stimulation onset. We propose instead to use thigh inclination as the reference information to build stimulation timing patterns. The tilting angles of both thighs are estimated from one inertial sensor located above each knee. An IF-THEN rule algorithm detects, online and automatically, the thigh peak angles in order to start and stop the stimulation of quadriceps muscles, depending on these events. One participant with complete paraplegia was included and was able to propel a recumbent trike using the proposed approach after a very short setting time. This new modality opens the way for a simpler and user-friendly method to automatically design FES-induced cycling stimulation patterns, adapted to clinical use, for multiple bike geometries and user morphologies.
Collapse
Affiliation(s)
- Benoît Sijobert
- Institut National de Recherche en Informatique et en Automatique (INRIA), Université de Montpellier, 34095 Montpellier, France.
| | - Ronan Le Guillou
- Institut National de Recherche en Informatique et en Automatique (INRIA), Université de Montpellier, 34095 Montpellier, France.
| | | | - Christine Azevedo Coste
- Institut National de Recherche en Informatique et en Automatique (INRIA), Université de Montpellier, 34095 Montpellier, France.
| |
Collapse
|
12
|
Ruslee R, Miller J, Gollee H. Investigation of different stimulation patterns with doublet pulses to reduce muscle fatigue. J Rehabil Assist Technol Eng 2019; 6:2055668319825808. [PMID: 31245029 PMCID: PMC6582293 DOI: 10.1177/2055668319825808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/18/2018] [Indexed: 11/29/2022] Open
Abstract
Introduction: Functional electrical stimulation is a common
technique used in the rehabilitation of individuals with a spinal cord injury to
produce functional movement of paralysed muscles. However, it is often
associated with rapid muscle fatigue which limits its applications.
Methods: The objective of this study is to investigate the
effects on the onset of fatigue of different multi-electrode patterns of
stimulation via multiple pairs of electrodes using doublet pulses: Synchronous
stimulation is compared to asynchronous stimulation patterns which are activated
sequentially (AsynS) or randomly (AsynR), mimicking voluntary muscle activation
by targeting different motor units. We investigated these three different
approaches by applying stimulation to the gastrocnemius muscle repeatedly for
10 min (300 ms stimulation followed by 700 ms of no-stimulation) with 40 Hz
effective frequency for all protocols and doublet pulses with an
inter-pulse-interval of 6 ms. Eleven able-bodied volunteers (28 ± 3 years old)
participated in this study. Ultrasound videos were recorded during stimulation
to allow evaluation of changes in muscle morphology. The main fatigue indicators
we focused on were the normalised fatigue index, fatigue time interval and
pre-post twitch–tetanus ratio. Results: The results demonstrate
that asynchronous stimulation with doublet pulses gives a higher normalised
fatigue index (0.80 ± 0.08 and 0.87 ± 0.08) for AsynS and AsynR, respectively,
than synchronous stimulation (0.62 ± 0.06). Furthermore, a longer fatigue time
interval for AsynS (302.2 ± 230.9 s) and AsynR (384.4 ± 279.0 s) compared to
synchronous stimulation (68.0 ± 30.5 s) indicates that fatigue occurs later
during asynchronous stimulation; however, this was only found to be
statistically significant for one of two methods used to calculate the group
mean. Although no significant difference was found in pre-post twitch–tetanus
ratio, there was a trend towards these effects. Conclusion: In this
study, we proposed an asynchronous stimulation pattern for the application of
functional electrical stimulation and investigated its suitability for reducing
muscle fatigue compared to previous methods. The results show that asynchronous
multi-electrode stimulation patterns with doublet pulses may improve fatigue
resistance in functional electrical stimulation applications in some
conditions.
Collapse
Affiliation(s)
- Ruslinda Ruslee
- Centre for Rehabilitation Engineering, University of Glasgow, Glasgow, UK.,Department of Electronics Engineering, MARA Japan Industrial Institute (MJII), Beranang, Selangor, Malaysia
| | - Jennifer Miller
- Centre for Rehabilitation Engineering, University of Glasgow, Glasgow, UK
| | - Henrik Gollee
- Centre for Rehabilitation Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Laubacher M, Aksoez EA, Brust AK, Baumberger M, Riener R, Binder-Macleod S, Hunt KJ. Stimulation of paralysed quadriceps muscles with sequentially and spatially distributed electrodes during dynamic knee extension. J Neuroeng Rehabil 2019; 16:5. [PMID: 30616683 PMCID: PMC6322281 DOI: 10.1186/s12984-018-0471-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During functional electrical stimulation (FES) tasks with able-bodied (AB) participants, spatially distributed sequential stimulation (SDSS) has demonstrated substantial improvements in power output and fatigue properties compared to conventional single electrode stimulation (SES). The aim of this study was to compare the properties of SDSS and SES in participants with spinal cord injury (SCI) in a dynamic isokinetic knee extension task simulating knee movement during recumbent cycling. METHOD Using a case-series design, m. vastus lateralis and medialis of four participants with motor and sensory complete SCI (AIS A) were stimulated for 6 min on both legs with both electrode setups. With SES, target muscles were stimulated by a pair of electrodes. In SDSS, the distal electrodes were replaced by four small electrodes giving the same overall stimulation frequency and having the same total surface area. Torque was measured during knee extension by a dynamometer at an angular velocity of 110 deg/s. Mean power of the left and right sides (PmeanL,R) was calculated from all stimulated extensions for initial, final and all extensions. Fatigue is presented as an index value with respect to initial power from 1 to 0, whereby 1 means no fatigue. RESULTS SDSS showed higher PmeanL,R values for all four participants for all extensions (increases of 132% in participant P1, 100% in P2, 36% in P3 and 18% in P4 compared to SES) and for the initial phase (increases of 84%, 59%, 66%, and 16%, respectively). Fatigue resistance was better with SDSS for P1, P2 and P4 but worse for P3 (0.47 vs 0.35, 0.63 vs 0.49, 0.90 vs 0.82 and 0.59 vs 0.77, respectively). CONCLUSION Consistently higher PmeanL,R was observed for all four participants for initial and overall contractions using SDSS. This supports findings from previous studies with AB participants. Fatigue properties were better in three of the four participants. The lower fatigue resistance with SDSS in one participant may be explained by a very low muscle activation level in this case. Further investigation in a larger cohort is warranted.
Collapse
Affiliation(s)
- Marco Laubacher
- Department of Physical Therapy, University of Delaware, Newark, United States of America.
| | - Efe A Aksoez
- Department of Physical Therapy, University of Delaware, Newark, United States of America
| | - Anne K Brust
- Department of Physical Therapy, University of Delaware, Newark, United States of America
| | - Michael Baumberger
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Pestalozzistrasse 20, Burgdorf, 3400, Switzerland.,Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8000, Switzerland
| | - Robert Riener
- Institute for Rehabilitation and Performance Technology, Division of Mechanical Engineering, Department of Engineering and Information Technology, Bern University of Applied Sciences, Pestalozzistrasse 20, Burgdorf, 3400, Switzerland.,Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8000, Switzerland
| | | | | |
Collapse
|
14
|
Zheng Y, Shin H, Hu X. Muscle Fatigue Post-stroke Elicited From Kilohertz-Frequency Subthreshold Nerve Stimulation. Front Neurol 2018; 9:1061. [PMID: 30564190 PMCID: PMC6288233 DOI: 10.3389/fneur.2018.01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
Purpose: Rapid muscle fatigue limits clinical applications of functional electrical stimulation (FES) for individuals with motor impairments. This study aimed to characterize the sustainability of muscle force elicited with a novel transcutaneous nerve stimulation technique. Method: A hemiplegic chronic stroke survivor was recruited in this case study. Clustered subthreshold pulses of 60-μs with kilohertz (12.5 kHz) carrier frequency (high-frequency mode, HF) were delivered transcutaneously to the proximal segment of the median/ulnar nerve bundles to evaluate the finger flexor muscle fatigue on both sides of the stroke survivor. Conventional nerve stimulation technique with 600-μs pulses at 30 Hz (low-frequency mode, LF) served as the control condition. Fatigue was evoked by intermittently delivering 3-s stimulation trains with 1-s resting. For fair comparison, initial contraction forces (approximately 30% of the maximal voluntary contraction) were matched between the HF and LF modes. Muscle fatigue was evaluated through elicited finger flexion forces (amplitude and fluctuation) and muscle activation patterns quantified by high-density electromyography (EMG). Result: Compared with those from the LF stimuli, the elicited forces declined more slowly, and the force plateau was higher under the HF stimulation for both the affected and contralateral sides, resulting in a more sustainable force output at higher levels. Meanwhile, the force fluctuation under the HF stimulation increased more slowly, and, thus, was smaller after successive stimulation trains compared with the LF stimuli, indicating a less synchronized activation of muscle fibers. The efficiency of the muscle activation, measured as the force-EMG ratio, was also higher in the HF stimulation mode. Conclusion: Our results indicated that the HF nerve stimulation technique can reduce muscle fatigue in stroke survivors by maintaining a higher efficiency of muscle activations compared with the LF stimulation. The technique can help improve the performance of neurorehabilitation methods based on electrical stimulation, and facilitate the utility of FES in clinical populations.
Collapse
Affiliation(s)
- Yang Zheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Henry Shin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
15
|
Parry SM, Chapple LAS, Mourtzakis M. Exploring the Potential Effectiveness of Combining Optimal Nutrition With Electrical Stimulation to Maintain Muscle Health in Critical Illness: A Narrative Review. Nutr Clin Pract 2018; 33:772-789. [PMID: 30358183 DOI: 10.1002/ncp.10213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Muscle wasting occurs rapidly within days of an admission to the intensive care unit (ICU). Concomitant muscle weakness and impaired physical functioning can ensue, with lasting effects well after hospital discharge. Early physical rehabilitation is a promising intervention to minimize muscle weakness and physical dysfunction. However, there is an often a delay in commencing active functional exercises (such as sitting on the edge of bed, standing and mobilizing) due to sedation, patient alertness, and impaired ability to cooperate in the initial days of ICU admission. Therefore, there is high interest in being able to intervene early through nonvolitional exercise strategies such as electrical muscle stimulation (EMS). Muscle health characterized as the composite of muscle quantity, as well as functional and metabolic integrity, may be potentially maintained when optimal nutrition therapy is provided in complement with early physical rehabilitation in critically ill patients; however, the type, dosage, and timing of these interventions are unclear. This article explores the potential role of nutrition and EMS in maintaining muscle health in critical illness. Within this article, we will evaluate fundamental concepts of muscle wasting and evaluate the effects of EMS, as well as the effects of nutrition therapy on muscle health and the clinical and functional outcomes in critically ill patients. We will also highlight current research gaps in order to advance the field forward in this important area.
Collapse
Affiliation(s)
- Selina M Parry
- Department of Physiotherapy, The University of Melbourne, Victoria, Australia
| | - Lee-Anne S Chapple
- Intensive Care Research, Royal Adelaide Hospital, South Australia, Australia
| | | |
Collapse
|
16
|
Islam MA, Hamzaid NA, Ibitoye MO, Hasnan N, Wahab AKA, Davis GM. Mechanomyography responses characterize altered muscle function during electrical stimulation-evoked cycling in individuals with spinal cord injury. Clin Biomech (Bristol, Avon) 2018; 58:21-27. [PMID: 30005423 DOI: 10.1016/j.clinbiomech.2018.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/16/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Investigation of muscle fatigue during functional electrical stimulation (FES)-evoked exercise in individuals with spinal cord injury using dynamometry has limited capability to characterize the fatigue state of individual muscles. Mechanomyography has the potential to represent the state of muscle function at the muscle level. This study sought to investigate surface mechanomyographic responses evoked from quadriceps muscles during FES-cycling, and to quantify its changes between pre- and post-fatiguing conditions in individuals with spinal cord injury. METHODS Six individuals with chronic motor-complete spinal cord injury performed 30-min of sustained FES-leg cycling exercise on two days to induce muscle fatigue. Each participant performed maximum FES-evoked isometric knee extensions before and after the 30-min cycling to determine pre- and post- extension peak torque concomitant with mechanomyography changes. FINDINGS Similar to extension peak torque, normalized root mean squared (RMS) and mean power frequency (MPF) of the mechanomyography signal significantly differed in muscle activities between pre- and post-FES-cycling for each quadriceps muscle (extension peak torque up to 69%; RMS up to 80%, and MPF up to 19%). Mechanomyographic-RMS showed significant reduction during cycling with acceptable between-days consistency (intra-class correlation coefficients, ICC = 0.51-0.91). The normalized MPF showed a weak association with FES-cycling duration (ICC = 0.08-0.23). During FES-cycling, the mechanomyographic-RMS revealed greater fatigue rate for rectus femoris and greater fatigue resistance for vastus medialis in spinal cord injured individuals. INTERPRETATION Mechanomyographic-RMS may be a useful tool for examining real time muscle function of specific muscles during FES-evoked cycling in individuals with spinal cord injury.
Collapse
Affiliation(s)
- Md Anamul Islam
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Physical Therapy, College of Staten Island, City University of New York, New York 10314, USA
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nazirah Hasnan
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ahmad Khairi Abdul Wahab
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Glen M Davis
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Sydney, 2006 NSW, Australia; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Mettler JA, Magee DM, Doucet BM. Low-frequency electrical stimulation with variable intensity preserves torque. J Electromyogr Kinesiol 2018; 42:49-56. [DOI: 10.1016/j.jelekin.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023] Open
|
18
|
Zheng Y, Hu X. Reduced muscle fatigue using kilohertz-frequency subthreshold stimulation of the proximal nerve. J Neural Eng 2018; 15:066010. [DOI: 10.1088/1741-2552/aadecc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Laubacher M, Aksöz AE, Riener R, Binder-Macleod S, Hunt KJ. Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task. Eur J Appl Physiol 2017; 117:1787-1798. [PMID: 28674921 PMCID: PMC5556133 DOI: 10.1007/s00421-017-3675-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/28/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE The low power output and fatigue resistance during functional electrical stimulation (FES) limits its use for functional applications. The aim of this study was to compare the power output and fatigue properties of spatially distributed sequential stimulation (SDSS) against conventional single electrode stimulation (SES) in an isokinetic knee extension task simulating knee movement during recumbent cycling. METHODS M. vastus lateralis and m. vastus medialis of eight able-bodied subjects were stimulated for 6 min on both legs with both setups. In the SES setup, target muscles were each stimulated by a pair of electrodes. In SDSS, four small electrodes replaced the SES active electrodes, but reference electrodes were the same. Torque was measured during knee extension movement by a dynamometer at an angular velocity of 110°/s. Mean power (P mean) was calculated from stimulated extensions for the first 10 extensions, the final 20 extensions and overall. Fatigue is presented as an index, calculated as the decrease with respect to initial power. RESULTS P mean was significantly higher for SDSS than for SES in the final phase (9.9 ± 4.0 vs. 7.4 ± 4.3 W, p = 0.035) and overall (11.5 ± 4.0 vs. 9.2 ± 4.5 W, p = 0.037). With SDSS, the reduction in P mean was significantly smaller compared to SES (from 14.9 to 9.9 vs. 14.6 to 7.4 W, p = 0.024). The absolute mean pulse width was substantially lower with SDSS (62.5 vs. 90.0 µs). CONCLUSION Although less stimulation was applied, SDSS showed a significantly higher mean power output than SES. SDSS also had improved fatigue resistance when compared to conventional stimulation. The SDSS approach may provide substantial performance benefits for cyclical FES applications.
Collapse
Affiliation(s)
- Marco Laubacher
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland.
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | - Anil Efe Aksöz
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Robert Riener
- Sensory Motor Systems Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Kenneth J Hunt
- Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, 3400, Burgdorf, Switzerland
| |
Collapse
|
20
|
Krueger E, Popović-Maneski L, Nohama P. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses. Artif Organs 2017; 42:208-218. [DOI: 10.1111/aor.12973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Eddy Krueger
- Neural Engineering and Rehabilitation Laboratory; Universidade Estadual de Londrina; Londrina Brazil
- Universidade Tecnológica Federal do Paraná; Curitiba Brazil
| | - Lana Popović-Maneski
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts; Belgrade Serbia
| | - Percy Nohama
- Universidade Tecnológica Federal do Paraná; Curitiba Brazil
- Graduate Program in Health Technology; Pontifícia Universidade Católica do Paraná; Curitiba Brazil
| |
Collapse
|
21
|
Bergquist AJ, Wiest MJ, Okuma Y, Collins DF. Interleaved neuromuscular electrical stimulation after spinal cord injury. Muscle Nerve 2017; 56:989-993. [PMID: 28245521 DOI: 10.1002/mus.25634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Neuromuscular electrical stimulation (NMES) over a muscle belly (mNMES) recruits superficial motor units (MUs) preferentially, whereas NMES over a nerve trunk (nNMES) recruits MUs evenly throughout the muscle. We performed tests to determine whether "interleaving" pulses between the mNMES and nNMES sites (iNMES) reduces the fatigability of contractions for people experiencing paralysis because of chronic spinal cord injury. METHODS Plantar flexion torque and soleus electromyography (M-waves) were recorded from 8 participants. A fatigue protocol (75 contractions; 2 s on/2 s off for 5 min) was delivered by iNMES. The results were compared with previously published data collected with mNMES and nNMES in the same 8 participants. RESULTS Torque declined ∼40% more during mNMES than during nNMES or iNMES. M-waves declined during mNMES but not during nNMES or iNMES. DISCUSSION To reduce fatigability of electrically evoked contractions of paralyzed plantar flexors, iNMES is equivalent to nNMES, and both are superior to mNMES. Muscle Nerve 56: 989-993, 2017.
Collapse
Affiliation(s)
- Austin J Bergquist
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Matheus J Wiest
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, E-488 Van Vliet Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2H9
| | - Yoshino Okuma
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, E-488 Van Vliet Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2H9
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, E-488 Van Vliet Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2H9
| |
Collapse
|
22
|
Bergquist AJ, Babbar V, Ali S, Popovic MR, Masani K. Fatigue reduction during aggregated and distributed sequential stimulation. Muscle Nerve 2016; 56:271-281. [PMID: 27862023 DOI: 10.1002/mus.25465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Transcutaneous neuromuscular electrical stimulation (NMES) can generate muscle contractions for rehabilitation and exercise. However, NMES-evoked contractions are limited by fatigue when they are delivered "conventionally" (CONV) using a single active electrode. Researchers have developed "sequential" (SEQ) stimulation, involving rotation of pulses between multiple "aggregated" (AGGR-SEQ) or "distributed" (DISTR-SEQ) active electrodes, to reduce fatigue (torque-decline) by reducing motor unit discharge rates. The primary objective was to compare fatigue-related outcomes, "potentiation," "variability," and "efficiency" between CONV, AGGR-SEQ, and DISTR-SEQ stimulation of knee extensors in healthy participants. METHODS Torque and current were recorded during testing with fatiguing trains using each NMES type under isometric and isokinetic (180°/s) conditions. RESULTS Compared with CONV stimulation, SEQ techniques reduced fatigue-related outcomes, increased potentiation, did not affect variability, and reduced efficiency. CONCLUSIONS SEQ techniques hold promise for reducing fatigue during NMES-based rehabilitation and exercise; however, optimization is required to improve efficiency. Muscle Nerve 56: 271-281, 2017.
Collapse
Affiliation(s)
- Austin J Bergquist
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Vishvek Babbar
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Saima Ali
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kei Masani
- Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Lou JWH, Bergquist AJ, Aldayel A, Czitron J, Collins DF. Interleaved neuromuscular electrical stimulation reduces muscle fatigue. Muscle Nerve 2016; 55:179-189. [PMID: 27313001 DOI: 10.1002/mus.25224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Neuromuscular electrical stimulation (NMES) can be delivered over a muscle belly (mNMES) or nerve trunk (nNMES). Both methods generate contractions that fatigue rapidly due, in part, to non-physiologically high motor unit (MU) discharge frequencies. In this study we introduce interleaved NMES (iNMES), whereby stimulus pulses are alternated between mNMES and nNMES. iNMES was developed to recruit different MU populations with every other stimulus pulse, with a goal of reducing discharge frequencies and muscle fatigue. METHODS Torque and electromyography were recorded during fatigue protocols (12 min, 240 contractions) delivered using mNMES, nNMES, and iNMES. RESULTS Torque declined significantly 3 min into iNMES and 1 min into both mNMES and nNMES. Torque decreased by 39% during iNMES and by 67% and 58% during mNMES and nNMES, respectively. CONCLUSIONS iNMES resulted in less muscle fatigue than mNMES and nNMES. Delivering NMES in ways that reduce MU discharge frequencies holds promise for reducing muscle fatigue during NMES-based rehabilitation. Muscle Nerve, 2016 Muscle Nerve 55: 179-189, 2017.
Collapse
Affiliation(s)
- Jenny W H Lou
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, E-488 Van Vliet Centre, Edmonton, Alberta, T6G 2H9, Canada
| | - Austin J Bergquist
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Abdulaziz Aldayel
- Department of Exercise Physiology, College of Sport Science and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Jennifer Czitron
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, E-488 Van Vliet Centre, Edmonton, Alberta, T6G 2H9, Canada
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, E-488 Van Vliet Centre, Edmonton, Alberta, T6G 2H9, Canada
| |
Collapse
|
24
|
Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Islam MA, Kean VSP, Davis GM. Torque and mechanomyogram relationships during electrically-evoked isometric quadriceps contractions in persons with spinal cord injury. Med Eng Phys 2016; 38:767-75. [PMID: 27289541 DOI: 10.1016/j.medengphy.2016.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 11/30/2022]
Abstract
The interaction between muscle contractions and joint loading produces torques necessary for movements during activities of daily living. However, during neuromuscular electrical stimulation (NMES)-evoked contractions in persons with spinal cord injury (SCI), a simple and reliable proxy of torque at the muscle level has been minimally investigated. Thus, the purpose of this study was to investigate the relationships between muscle mechanomyographic (MMG) characteristics and NMES-evoked isometric quadriceps torques in persons with motor complete SCI. Six SCI participants with lesion levels below C4 [(mean (SD) age, 39.2 (7.9) year; stature, 1.71 (0.05) m; and body mass, 69.3 (12.9) kg)] performed randomly ordered NMES-evoked isometric leg muscle contractions at 30°, 60° and 90° knee flexion angles on an isokinetic dynamometer. MMG signals were detected by an accelerometer-based vibromyographic sensor placed over the belly of rectus femoris muscle. The relationship between MMG root mean square (MMG-RMS) and NMES-evoked torque revealed a very high association (R(2)=0.91 at 30°; R(2)=0.98 at 60°; and R(2)=0.97 at 90° knee angles; P<0.001). MMG peak-to-peak (MMG-PTP) and stimulation intensity were less well related (R(2)=0.63 at 30°; R(2)=0.67 at 60°; and R(2)=0.45 at 90° knee angles), although were still significantly associated (P≤0.006). Test-retest interclass correlation coefficients (ICC) for the dependent variables ranged from 0.82 to 0.97 for NMES-evoked torque, between 0.65 and 0.79 for MMG-RMS, and from 0.67 to 0.73 for MMG-PTP. Their standard error of measurements (SEM) ranged between 10.1% and 31.6% (of mean values) for torque, MMG-RMS and MMG-PTP. The MMG peak frequency (MMG-PF) of 30Hz approximated the stimulation frequency, indicating NMES-evoked motor unit firing rate. The results demonstrated knee angle differences in the MMG-RMS versus NMES-isometric torque relationship, but a similar torque related pattern for MMG-PF. These findings suggested that MMG was well associated with torque production, reliably tracking the motor unit recruitment pattern during NMES-evoked muscle contractions. The strong positive relationship between MMG signal and NMES-evoked torque production suggested that the MMG might be deployed as a direct proxy for muscle torque or fatigue measurement during leg exercise and functional movements in the SCI population.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, P. M. B. 1515 Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Ahmad Khairi Abdul Wahab
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Md Anamul Islam
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Victor S P Kean
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Glen M Davis
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sports Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, 2006 NSW, Australia
| |
Collapse
|
25
|
Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Davis GM. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review. PLoS One 2016; 11:e0149024. [PMID: 26859296 PMCID: PMC4747522 DOI: 10.1371/journal.pone.0149024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Methods Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Results Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units. Conclusion Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmad Khairi Abdul Wahab
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Glen M. Davis
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Adewole DO, Serruya MD, Harris JP, Burrell JC, Petrov D, Chen HI, Wolf JA, Cullen DK. The Evolution of Neuroprosthetic Interfaces. Crit Rev Biomed Eng 2016; 44:123-52. [PMID: 27652455 PMCID: PMC5541680 DOI: 10.1615/critrevbiomedeng.2016017198] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ideal neuroprosthetic interface permits high-quality neural recording and stimulation of the nervous system while reliably providing clinical benefits over chronic periods. Although current technologies have made notable strides in this direction, significant improvements must be made to better achieve these design goals and satisfy clinical needs. This article provides an overview of the state of neuroprosthetic interfaces, starting with the design and placement of these interfaces before exploring the stimulation and recording platforms yielded from contemporary research. Finally, we outline emerging research trends in an effort to explore the potential next generation of neuroprosthetic interfaces.
Collapse
Affiliation(s)
- Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Mijail D. Serruya
- Department of Neurology, Jefferson University, Philadelphia, PA, USA
| | - James P. Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - H. Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Downey RJ, Cheng TH, Bellman MJ, Dixon WE. Closed-Loop Asynchronous Neuromuscular Electrical Stimulation Prolongs Functional Movements in the Lower Body. IEEE Trans Neural Syst Rehabil Eng 2015; 23:1117-27. [PMID: 25935038 DOI: 10.1109/tnsre.2015.2427658] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Low-intensity functional electrical stimulation can increase multidirectional trunk stiffness in able-bodied individuals during sitting. Med Eng Phys 2015; 37:777-82. [DOI: 10.1016/j.medengphy.2015.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/19/2015] [Accepted: 05/09/2015] [Indexed: 11/21/2022]
|
29
|
Sayenko DG, Nguyen R, Hirabayashi T, Popovic MR, Masani K. Method to Reduce Muscle Fatigue During Transcutaneous Neuromuscular Electrical Stimulation in Major Knee and Ankle Muscle Groups. Neurorehabil Neural Repair 2014; 29:722-33. [PMID: 25549655 DOI: 10.1177/1545968314565463] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND A critical limitation with transcutaneous neuromuscular electrical stimulation as a rehabilitative approach is the rapid onset of muscle fatigue during repeated contractions. We have developed a method called spatially distributed sequential stimulation (SDSS) to reduce muscle fatigue by distributing the center of electrical field over a wide area within a single stimulation site, using an array of surface electrodes. OBJECTIVE To extend the previous findings and to prove feasibility of the method by exploring the fatigue-reducing ability of SDSS for lower limb muscle groups in the able-bodied population, as well as in individuals with spinal cord injury (SCI). METHODS SDSS was delivered through 4 active electrodes applied to the knee extensors and flexors, plantarflexors, and dorsiflexors, sending a stimulation pulse to each electrode one after another with 90° phase shift between successive electrodes. Isometric ankle torque was measured during fatiguing stimulations using SDSS and conventional single active electrode stimulation lasting 2 minutes. RESULTS We demonstrated greater fatigue-reducing ability of SDSS compared with the conventional protocol, as revealed by larger values of fatigue index and/or torque peak mean in all muscles except knee flexors of able-bodied individuals, and in all muscles tested in individuals with SCI. CONCLUSIONS Our study has revealed improvements in fatigue tolerance during transcutaneous neuromuscular electrical stimulation using SDSS, a stimulation strategy that alternates activation of subcompartments of muscles. The SDSS protocol can provide greater stimulation times with less decrement in mechanical output compared with the conventional protocol.
Collapse
Affiliation(s)
| | - Robert Nguyen
- Automatic Control Laboratory, ETH Zurich, Zurich, Switzerland
| | - Tomoyo Hirabayashi
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada
| | - Milos R Popovic
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada University of Toronto, Toronto, Ontario, Canada
| | - Kei Masani
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Downey RJ, Bellman MJ, Kawai H, Gregory CM, Dixon WE. Comparing the Induced Muscle Fatigue Between Asynchronous and Synchronous Electrical Stimulation in Able-Bodied and Spinal Cord Injured Populations. IEEE Trans Neural Syst Rehabil Eng 2014; 23:964-72. [PMID: 25350934 DOI: 10.1109/tnsre.2014.2364735] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuromuscular electrical stimulation (NMES) has been shown to impart a number of health benefits and can be used to produce functional outcomes. However, one limitation of NMES is the onset of NMES-induced fatigue. Multi-channel asynchronous stimulation has been shown to reduce NMES-induced fatigue compared to conventional single-channel stimulation. However, in previous studies in man, the effect of stimulation frequency on the NMES-induced fatigue has not been examined for asynchronous stimulation. Low stimulation frequencies are known to reduce fatigue during conventional stimulation. Therefore, the aim of this study was to examine the fatigue characteristics of high- and low-frequency asynchronous stimulation as well as high- and low-frequency conventional stimulation. Experiments were performed in both able-bodied and spinal cord injured populations. Low frequency asynchronous stimulation is found to have significant fatigue benefits over high frequency asynchronous stimulation as well as high- and low-frequency conventional stimulation, motivating its use for rehabilitation and functional electrical stimulation (FES).
Collapse
|
31
|
Downey RJ, Tate M, Kawai H, Dixon WE. Comparing the force ripple during asynchronous and conventional stimulation. Muscle Nerve 2014; 50:549-55. [DOI: 10.1002/mus.24186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Ryan J. Downey
- Department of Mechanical and Aerospace Engineering; University of Florida; Gainesville Florida 32611-6250 USA
| | - Mark Tate
- Department of Mechanical and Aerospace Engineering; University of Florida; Gainesville Florida 32611-6250 USA
| | - Hiroyuki Kawai
- Department of Robotics; Kanazawa Institute of Technology; Ishikawa Japan
| | - Warren E. Dixon
- Department of Mechanical and Aerospace Engineering; University of Florida; Gainesville Florida 32611-6250 USA
| |
Collapse
|
32
|
Parry SM, Berney S, Warrillow S, El-Ansary D, Bryant AL, Hart N, Puthucheary Z, Koopman R, Denehy L. Functional electrical stimulation with cycling in the critically ill: a pilot case-matched control study. J Crit Care 2014; 29:695.e1-695.e6957. [PMID: 24768534 DOI: 10.1016/j.jcrc.2014.03.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/05/2014] [Accepted: 03/11/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose was to determine (a) safety and feasibility of functional electrical stimulation (FES)-cycling and (b) compare FES-cycling to case-matched controls in terms of functional recovery and delirium outcomes. MATERIALS AND METHODS Sixteen adult intensive care unit patients with sepsis ventilated for more than 48 hours and in the intensive care unit for at least 4 days were included. Eight subjects underwent FES-cycling in addition to usual care and were compared to 8 case-matched control individuals. Primary outcomes were safety and feasibility of FES-cycling. Secondary outcomes were Physical Function in Intensive Care Test scored on awakening, time to reach functional milestones, and incidence and duration of delirium. RESULTS One minor adverse event was recorded. Sixty-nine out of total possible 95 FES sessions (73%) were completed. A visible or palpable contraction was present 80% of the time. There was an improvement in Physical Function in Intensive Care Test score of 3.9/10 points in the intervention cohort with faster recovery of functional milestones. There was also a shorter duration of delirium in the intervention cohort. CONCLUSIONS The delivery of FES-cycling is both safe and feasible. The preliminary findings suggest that FES-cycling may improve function and reduce delirium. Further research is required to confirm the findings of this study and evaluate the efficacy of FES-cycling.
Collapse
Affiliation(s)
- Selina M Parry
- Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Sue Berney
- Department of Physiotherapy, Austin Health, Melbourne, Australia
| | | | - Doa El-Ansary
- Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Adam L Bryant
- Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Nicholas Hart
- Guy's and St Thomas' NHS Foundation Trust and King's College London, NIHR Comprehensive Biomedical Research Centre, London, UK
| | - Zudin Puthucheary
- Department of Asthma, Allergy and Lung Biology, Institute of Health and Human Performance, University College London, Kings College London, London, UK
| | - Renè Koopman
- Department of Physiology, The University of Melbourne, Melbourne, Australia
| | - Linda Denehy
- Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
33
|
Turnbull AE, Parker AM, Needham DM. Supporting small steps toward big innovations: the importance of rigorous pilot studies in critical care. J Crit Care 2014; 29:669-70. [PMID: 24930365 DOI: 10.1016/j.jcrc.2014.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Alison E Turnbull
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Ann M Parker
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Dale M Needham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Outcomes After Critical Illness and Surgery (OACIS) Group, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
34
|
Akima H, Saito A, Watanabe K, Kouzaki M. Alternate muscle activity patterns among synergists of the quadriceps femoris including the vastus intermedius during low-level sustained contraction in men. Muscle Nerve 2012; 46:86-95. [PMID: 22692997 DOI: 10.1002/mus.23268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION We quantified the alternate muscle activity among four synergists of the quadriceps femoris (QF), including the vastus intermedius (VI), during low-level sustained contraction. METHODS Surface electromyograms (EMGs) were recorded from the VI, vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) in 11 healthy men during isometric knee extension at 2.5% maximum voluntary contraction for 60 min to determine alternate muscle activity among the four synergists of the QF. RESULTS Alternate activity was primarily found between the RF and VI, VL, or VM, and rarely found among the vasti muscles. Multiple muscle comparison revealed the duration of alternate activity in the RF/VI+VL+VM combination remained high throughout the experiment, although the frequency of that combination did not. CONCLUSIONS These results suggested that there is a fixed muscle combination, i.e., RF and the 3 vasti muscles, to perform low-intensity sustained contraction in the human QF.
Collapse
Affiliation(s)
- Hiroshi Akima
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.
| | | | | | | |
Collapse
|
35
|
Tanabe S, Kubota S, Itoh N, Kimura T, Muraoka Y, Shimizu A, Kanada Y. Estimation of the kinetic-optimized stimulus intensity envelope for drop foot gait rehabilitation. J Med Eng Technol 2012; 36:210-6. [DOI: 10.3109/03091902.2012.666320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Parry SM, Berney S, Koopman R, Bryant A, El-Ansary D, Puthucheary Z, Hart N, Warrillow S, Denehy L. Early rehabilitation in critical care (eRiCC): functional electrical stimulation with cycling protocol for a randomised controlled trial. BMJ Open 2012; 2:bmjopen-2012-001891. [PMID: 22983782 PMCID: PMC3467594 DOI: 10.1136/bmjopen-2012-001891] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Intensive care-acquired weakness is a common problem, leads to significant impairment in physical functioning and muscle strength, and is prevalent in individuals with sepsis. Early rehabilitation has been shown to be safe and feasible; however, commencement is often delayed due to a patient's inability to co-operate. An intervention that begins early in an intensive care unit (ICU) admission without the need for patient volition may be beneficial in attenuating muscle wasting. The eRiCC (early rehabilitation in critical care) trial will investigate the effectiveness of functional electrical stimulation-assisted cycling and cycling alone, compared to standard care, in individuals with sepsis. METHODS AND ANALYSIS This is a single centre randomised controlled trial. Participants (n=80) aged ≥18 years, with a diagnosis of sepsis or severe sepsis, who are expected to be mechanically ventilated for ≥48 h and remain in the intensive care ≥4 days will be randomised within 72 h of admission to (1) standard care or (2) intervention where participants will receive functional electrical muscle stimulation-assisted supine cycling on one leg while the other leg undergoes cycling alone. Primary outcome measures include: muscle mass (quadriceps ultrasonography; bioelectrical impedance spectroscopy); muscle strength (Medical Research Council Scale; hand-held dynamometry) and physical function (Physical Function in Intensive Care Test; Functional Status Score in intensive care; 6 min walk test). Blinded outcome assessors will assess measures at baseline, weekly, at ICU discharge and acute hospital discharge. Secondary measures will be evaluated in a nested subgroup (n=20) and will consist of biochemical/histological analyses of collected muscle, urine and blood samples at baseline and at ICU discharge. ETHICS AND DISSEMINATION Ethics approval has been obtained from the relevant institution, and results will be published to inform clinical practice in the care of patients with sepsis to optimise rehabilitation and physical function outcomes. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry ACTRN12612000528853.
Collapse
Affiliation(s)
- Selina M Parry
- Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Forrest GP, Smith TC, Triolo RJ, Gagnon J, DiRisio D, Miller ME, Rhodi L. Use of the Case Western Reserve/Veterans Administration neuroprosthesis for exercise, standing and transfers by a paraplegic subject. Disabil Rehabil Assist Technol 2011; 7:340-4. [PMID: 22053832 DOI: 10.3109/17483107.2011.629328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Functional electric stimulation (FES) is a technology that may allow patients with spinal cord injury (SCI) to transfer stand and walk. This paper reports upon the use of the Case Western Reserve Neuroprosthesis by a T6 ASIA B paraplegic subject. The subject was able to stand for two minutes and 50 seconds. He could walk 35 feet with a swing to gait. Measurement of energy consumption showed that metabolic demand was only 2.1 metabolic equivalent units. The factors that limited the use of the device that need to be improved to make the technology practical for household or community ambulation are speed (5.8 m/min) of ambulation and fatigue of the stimulated muscles.
Collapse
Affiliation(s)
- George P Forrest
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, OH, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol 2011; 111:2399-407. [PMID: 21870119 DOI: 10.1007/s00421-011-2128-4] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.
Collapse
|