1
|
Schlaff CD, Helgeson MD, Wagner SC. Pathophysiologic Spine Adaptations and Countermeasures for Prolonged Spaceflight. Clin Spine Surg 2024; 37:43-48. [PMID: 37459484 DOI: 10.1097/bsd.0000000000001488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 02/28/2024]
Abstract
Low back pain due to spaceflight is a common complaint of returning astronauts. Alterations in musculoskeletal anatomy during spaceflight and the effects of microgravity (μg) have been well-studied; however, the mechanisms behind these changes remain unclear. The National Aeronautics and Space Administration has released the Human Research Roadmap to guide investigators in developing effective countermeasure strategies for the Artemis Program, as well as commercial low-orbit spaceflight. Based on the Human Research Roadmap, the existing literature was examined to determine the current understanding of the effects of microgravity on the musculoskeletal components of the spinal column. In addition, countermeasure strategies will be required to mitigate these effects for long-duration spaceflight. Current pharmacologic and nonpharmacologic countermeasure strategies are suboptimal, as evidenced by continued muscle and bone loss, alterations in muscle phenotype, and bone metabolism. However, studies incorporating the use of ultrasound, beta-blockers, and other pharmacologic agents have shown some promise. Understanding these mechanisms will not only benefit space technology but likely lead to a return on investment for the management of Earth-bound diseases.
Collapse
Affiliation(s)
- Cody D Schlaff
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, National Capital Consortium
- The Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Melvin D Helgeson
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, National Capital Consortium
- The Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Scott C Wagner
- Department of Orthopedic Surgery, Walter Reed National Military Medical Center, National Capital Consortium
- The Uniformed Services University of the Health Sciences, Bethesda, MD
| |
Collapse
|
2
|
Zuccarelli L, Baldassarre G, Winnard A, Harris KM, Weber T, Green DA, Petersen LG, Kamine TH, Roberts L, Kim DS, Greaves DK, Arya R, Laws JM, Elias A, Rittweger J, Grassi B, Goswami N. Effects of whole-body vibration or resistive-vibration exercise on blood clotting and related biomarkers: a systematic review. NPJ Microgravity 2023; 9:87. [PMID: 38057333 DOI: 10.1038/s41526-023-00338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Whole-body vibration (WBV) and resistive vibration exercise (RVE) are utilized as countermeasures against bone loss, muscle wasting, and physical deconditioning. The safety of the interventions, in terms of the risk of inducing undesired blood clotting and venous thrombosis, is not clear. We therefore performed the present systematic review of the available scientific literature on the issue. The review was conducted following the guidelines by the Space Biomedicine Systematic Review Group, based on Cochrane review guidelines. The relevant context or environment of the studies was "ground-based environment"; space analogs or diseased conditions were not included. The search retrieved 801 studies; 77 articles were selected for further consideration after an initial screening. Thirty-three studies met the inclusion criteria. The main variables related to blood markers involved angiogenic and endothelial factors, fibrinolysis and coagulation markers, cytokine levels, inflammatory and plasma oxidative stress markers. Functional and hemodynamic markers involved blood pressure measurements, systemic vascular resistance, blood flow and microvascular and endothelial functions. The available evidence suggests neutral or potentially positive effects of short- and long-term interventions with WBV and RVE on variables related to blood coagulation, fibrinolysis, inflammatory status, oxidative stress, cardiovascular, microvascular and endothelial functions. No significant warning signs towards an increased risk of undesired clotting and venous thrombosis were identified. If confirmed by further studies, WBV and RVE could be part of the countermeasures aimed at preventing or attenuating the muscular and cardiovascular deconditioning associated with spaceflights, permanence on planetary habitats and ground-based simulations of microgravity.
Collapse
Affiliation(s)
| | | | | | - Katie M Harris
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Tobias Weber
- Space Medicine Team, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - David A Green
- Space Medicine Team, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- KBR GmbH, Cologne, Germany
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Lonnie G Petersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tovy Haber Kamine
- Division of Trauma, Acute Care Surgery, and Surgical Critical Care, Baystate Medical Center, Springfield, MA, USA
| | - Lara Roberts
- Kings College Hospital, NHS Foundation Trust, London, UK
| | - David S Kim
- Space Medicine Team, European Astronaut Centre, European Space Agency (ESA), Cologne, Germany
- Department of Emergency Medicine, Faculty of Medicine, University of British Columbia, Kelowna, Canada
| | - Danielle K Greaves
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Roopen Arya
- Kings College Hospital, NHS Foundation Trust, London, UK
| | | | - Antoine Elias
- Department of Vascular Medicine, Sainte Musse Hospital, Toulon La Seyne Hospital Centre, Toulon, France
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy.
| | - Nandu Goswami
- Division of Physiology, Otto Löwi Research Center for Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
- Mohammed Bin Rashid University of Medicine and Applied Health Sciences, Dubai, UAE
| |
Collapse
|
3
|
Winnard A, Scott J, Waters N, Vance M, Caplan N. Effect of Time on Human Muscle Outcomes During Simulated Microgravity Exposure Without Countermeasures-Systematic Review. Front Physiol 2019; 10:1046. [PMID: 31474878 PMCID: PMC6707384 DOI: 10.3389/fphys.2019.01046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Space Agencies are planning human missions beyond Low Earth Orbit. Consideration of how physiological system adaptation with microgravity (μG) will be managed during these mission scenarios is required. Exercise countermeasures (CM) could be used more sparingly to decrease limited resource costs, including periods of no exercise. This study provides a complete overview of the current evidence, making recommendations on the length of time humans exposed to simulated μG might safely perform no exercise considering muscles only. Methods: Electronic databases were searched for astronaut or space simulation bed rest studies, as the most valid terrestrial simulation, from start of records to July 2017. Studies were assessed with the Quality in Prognostic Studies and bed rest analog studies assessed for transferability to astronauts using the Aerospace Medicine Systematic Review Group Tool for Assessing Bed Rest Methods. Effect sizes, based on no CM groups, were used to assess muscle outcomes over time. Outcomes included were contractile work capacity, muscle cross sectional area, muscle activity, muscle thickness, muscle volume, maximal voluntary contraction force during one repetition maximum, peak power, performance based outcomes, power, and torque/strength. Results: Seventy-five bed rest μG simulation studies were included, many with high risk of confounding factors and participation bias. Most muscle outcomes deteriorated over time with no countermeasures. Moderate effects were apparent by 7-15 days and large by 28-56 days. Moderate effects (>0.6) became apparent in the following order, power and MVC during one repetition maximum (7 days), followed by volume, cross sectional area, torques and strengths, contractile work capacity, thickness and endurance (14 days), then muscle activity (15 days). Large effects (>1.2) became apparent in the following order, volume, cross sectional area (28 days) torques and strengths, thickness (35 days) and peak power (56 days). Conclusions: Moderate effects on a range of muscle parameters may occur within 7-14 days of unloading, with large effects within 35 days. Combined with muscle performance requirements for mission tasks, these data, may support the design of CM programmes to maximize efficiency without compromising crew safety and mission success when incorporated with data from additional physiological systems that also need consideration.
Collapse
Affiliation(s)
- Andrew Winnard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Jonathan Scott
- Space Medicine Office, European Astronaut Centre, Cologne, Germany
| | - Nathan Waters
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Martin Vance
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Nick Caplan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Zheng YL, Zhang ZJ, Peng MS, Hu HY, Zhang J, Wang XQ. Whole-body vibration exercise for low back pain: A meta-analysis protocol of randomized controlled trial. Medicine (Baltimore) 2018; 97:e12534. [PMID: 30235777 PMCID: PMC6160172 DOI: 10.1097/md.0000000000012534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Low back pain (LBP) affects about 80% of the population at some time in their lives. Exercise therapy is the most widely used nonsurgical intervention for low back pain in practice. Thus, whole-body vibration (WBV) exercise is becoming increasingly popular in relieving musculoskeletal pain and in improving function. However, the efficacy of WBV exercise is not without dispute for low back pain. This meta-analysis, with its comprehensive and rigorous methodology, will provide better insight into this problem. METHODS Published articles will be identified using electronic searches from 1950 to 2018. The Cochrane Library, PubMed, Web of Science, Embase, CINAHL-Ebsco, PEDro, and China Biology Medicine will be searched for randomized controlled trials. Studies without a parallel comparison group will be excluded. Two reviewers will independently select relevant studies that investigate on WBV exercise for patients with LBP. Data extraction will be done independently by the same 2 reviewers who selected the studies. The primary outcome will be to assess pain, back-specific disability index, and adverse effect. Continuous data will be pooled by calculating the mean difference using the random-effects model. RESULTS The results of the final meta-analysis will provide an evidence of WBV exercise for low back pain. CONCLUSION This meta-analysis will provide a detailed summary of the evidence on the effects of WBV exercise on patients with LBP, in comparison with general exercise or without treatment. This review will benefit to researchers and policy makers who are interested in the treatment of LBP by WBV exercise.
Collapse
Affiliation(s)
- Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai
| | - Zhi-Jie Zhang
- Rehabilitation Therapy Center, Henan Province Orthopedic Hospital, Luoyang, China
| | - Meng-Si Peng
- Department of Sport Rehabilitation, Shanghai University of Sport
| | - Hao-Yu Hu
- Department of Sport Rehabilitation, Shanghai University of Sport
| | - Ju Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai
| |
Collapse
|
5
|
Huang Y, Fan Y, Salanova M, Yang X, Sun L, Blottner D. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse. Front Physiol 2018; 9:616. [PMID: 29875702 PMCID: PMC5974101 DOI: 10.3389/fphys.2018.00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.
Collapse
Affiliation(s)
- Yunfei Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Michele Salanova
- Institute of Vegetative Anatomy, Charité - University Medicine Berlin, Berlin, Germany
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Lianwen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Dieter Blottner
- Institute of Vegetative Anatomy, Charité - University Medicine Berlin, Berlin, Germany.,Center of Space Medicine Berlin, Neuromuscular Group, Charité - University Medicine Berlin, Berlin, Germany
| |
Collapse
|
6
|
Demontis GC, Germani MM, Caiani EG, Barravecchia I, Passino C, Angeloni D. Human Pathophysiological Adaptations to the Space Environment. Front Physiol 2017; 8:547. [PMID: 28824446 PMCID: PMC5539130 DOI: 10.3389/fphys.2017.00547] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/14/2017] [Indexed: 12/29/2022] Open
Abstract
Space is an extreme environment for the human body, where during long-term missions microgravity and high radiation levels represent major threats to crew health. Intriguingly, space flight (SF) imposes on the body of highly selected, well-trained, and healthy individuals (astronauts and cosmonauts) pathophysiological adaptive changes akin to an accelerated aging process and to some diseases. Such effects, becoming manifest over a time span of weeks (i.e., cardiovascular deconditioning) to months (i.e., loss of bone density and muscle atrophy) of exposure to weightlessness, can be reduced through proper countermeasures during SF and in due time are mostly reversible after landing. Based on these considerations, it is increasingly accepted that SF might provide a mechanistic insight into certain pathophysiological processes, a concept of interest to pre-nosological medicine. In this article, we will review the main stress factors encountered in space and their impact on the human body and will also discuss the possible lessons learned with space exploration in reference to human health on Earth. In fact, this is a productive, cross-fertilized, endeavor in which studies performed on Earth yield countermeasures for protection of space crew health, and space research is translated into health measures for Earth-bound population.
Collapse
Affiliation(s)
| | - Marco M Germani
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Enrico G Caiani
- Department of Electronics, Information and Biomedical Engineering, Politecnico di MilanoMilan, Italy
| | - Ivana Barravecchia
- Department of Pharmacy, University of PisaPisa, Italy.,MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Claudio Passino
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy.,Fondazione Toscana G. MonasterioPisa, Italy
| | - Debora Angeloni
- MedLab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| |
Collapse
|
7
|
Winnard A, Nasser M, Debuse D, Stokes M, Evetts S, Wilkinson M, Hides J, Caplan N. Systematic review of countermeasures to minimise physiological changes and risk of injury to the lumbopelvic area following long-term microgravity. Musculoskelet Sci Pract 2017; 27 Suppl 1:S5-S14. [PMID: 28173932 DOI: 10.1016/j.msksp.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/13/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND No studies have been published on an astronaut population to assess the effectiveness of countermeasures for limiting physiological changes in the lumbopelvic region caused by microgravity exposure during spaceflight. However, several studies in this area have been done using spaceflight simulation via bed-rest. The purpose of this systematic review was to evaluate the effectiveness of countermeasures designed to limit physiological changes to the lumbopelvic region caused by spaceflight simulation by means of bed-rest. METHODS Electronic databases were searched from the start of their records to November 2014. Studies were assessed with PEDro, Cochrane Risk of Bias and a bed-rest study quality tool. Magnitude based inferences were used to assess countermeasure effectiveness. RESULTS Seven studies were included. There was a lack of consistency across studies in reporting of outcome measures. Some countermeasures were found to be successful in preventing some lumbopelvic musculoskeletal changes, but not others. For example, resistive vibration exercise prevented muscle changes, but showed the potential to worsen loss of lumbar lordosis and intervertebral disc height. CONCLUSION Future studies investigating countermeasures should report consistent outcomes, and also use an actual microgravity environment. Additional research with patient reported quality of life and functional outcome measures is advocated.
Collapse
Affiliation(s)
- Andrew Winnard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Mona Nasser
- Peninsula Dental School, Plymouth University, Plymouth, UK
| | - Dorothee Debuse
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Maria Stokes
- Faculty of Health Sciences, University of Southampton, Southampton, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, UK
| | - Simon Evetts
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK; Wyle GmbH, Cologne, Germany
| | - Mick Wilkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Julie Hides
- Centre for Musculoskeletal Research, Mary MacKillop Institute for Health Research, Australian Catholic University, Brisbane, Australia
| | - Nick Caplan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Grimm D, Grosse J, Wehland M, Mann V, Reseland JE, Sundaresan A, Corydon TJ. The impact of microgravity on bone in humans. Bone 2016; 87:44-56. [PMID: 27032715 DOI: 10.1016/j.bone.2015.12.057] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/17/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Experiencing real weightlessness in space is a dream for many of us who are interested in space research. Although space traveling fascinates us, it can cause both short-term and long-term health problems. Microgravity is the most important influence on the human organism in space. The human body undergoes dramatic changes during a long-term spaceflight. In this review, we will mainly focus on changes in calcium, sodium and bone metabolism of space travelers. Moreover, we report on the current knowledge on the mechanisms of bone loss in space, available models to simulate the effects of microgravity on bone on Earth as well as the combined effects of microgravity and cosmic radiation on bone. The available countermeasures applied in space will also be evaluated.
Collapse
Affiliation(s)
- Daniela Grimm
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Jirka Grosse
- Department of Nuclear Medicine Germany, University of Regensburg, D-93042 Regensburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, D-39120 Magdeburg, Germany
| | - Vivek Mann
- Department of Biology, Texas Southern University, 3100 Cleburne, Houston, TX 77004, USA
| | - Janne Elin Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, N-0317 Oslo, Norway
| | - Alamelu Sundaresan
- Department of Biology, Texas Southern University, 3100 Cleburne, Houston, TX 77004, USA
| | | |
Collapse
|
9
|
Effects of Fourteen-Day Bed Rest on Trunk Stabilizing Functions in Aging Adults. BIOMED RESEARCH INTERNATIONAL 2015; 2015:309386. [PMID: 26601104 PMCID: PMC4637013 DOI: 10.1155/2015/309386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/15/2015] [Accepted: 07/01/2015] [Indexed: 01/29/2023]
Abstract
Bed rest has been shown to have detrimental effects on structural and functional characteristics of the trunk muscles, possibly affecting trunk and spinal stability. This is especially important in populations such as aging adults with often altered trunk stabilizing functions. This study examined the effects of a fourteen-day bed rest on anticipatory postural adjustments and postural reflex responses of the abdominal wall and back muscles in sixteen adult men. Postural activation of trunk muscles was measured using voluntary quick arm movement and sudden arm loading paradigm. Measurements were conducted prior to the bed rest, immediately after, and fourteen days after the bed rest. Immediately after the bed rest, latencies of anticipatory postural adjustments showed significant shortening, especially for the obliquus internus and externus muscles. After a fourteen-day recuperation period, anticipatory postural adjustments reached a near to complete recovery. On the contrary, reactive response latencies increased from pre-bed-rest to both post-bed-rest measurement sessions. Results indicate an important effect of bed rest on stabilizing functions of the trunk muscles in elderly adults. Moreover, there proved to be a significant deterioration of postural reactive responses that outlasted the 14-day post-bed-rest rehabilitation.
Collapse
|
10
|
Smith SM, McCoy T, Gazda D, Morgan JLL, Heer M, Zwart SR. Space flight calcium: implications for astronaut health, spacecraft operations, and Earth. Nutrients 2012; 4:2047-68. [PMID: 23250146 PMCID: PMC3546622 DOI: 10.3390/nu4122047] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 11/21/2022] Open
Abstract
The space flight environment is known to induce bone loss and, subsequently, calcium loss. The longer the mission, generally the more bone and calcium are lost. This review provides a history of bone and calcium studies related to space flight and highlights issues related to calcium excretion that the space program must consider so that urine can be recycled. It also discusses a novel technique using natural stable isotopes of calcium that will be helpful in the future to determine calcium and bone balance during space flight.
Collapse
Affiliation(s)
- Scott M. Smith
- Human Health and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA; E-Mail:
| | - Torin McCoy
- Human Health and Performance Directorate, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA; E-Mail:
| | - Daniel Gazda
- Wyle Science, Technology & Engineering Group, Houston, TX 77058, USA; E-Mail:
| | - Jennifer L. L. Morgan
- Oak Ridge Associated Universities/NASA Post-Doctoral Fellow, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA; E-Mail:
| | - Martina Heer
- Profil, 41460 Neuss, Germany; E-Mail:
- University of Bonn, 53115 Bonn, Germany
| | - Sara R. Zwart
- Division of Space Life Sciences, Universities Space Research Association, Houston, TX 77058, USA; E-Mail:
| |
Collapse
|
11
|
Hargens AR, Bhattacharya R, Schneider SM. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol 2012; 113:2183-92. [DOI: 10.1007/s00421-012-2523-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/05/2012] [Indexed: 01/06/2023]
|