1
|
Nevanperä S, Hu N, Walker S, Avela J, Piirainen JM. Modulation of H-reflex and V-wave responses during dynamic balance perturbations. Exp Brain Res 2023; 241:1599-1610. [PMID: 37142781 DOI: 10.1007/s00221-023-06625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Motoneuron excitability is possible to measure using H-reflex and V-wave responses. However, it is not known how the motor control is organized, how the H-reflex and V-wave responses modulate and how repeatable these are during dynamic balance perturbations. To assess the repeatability, 16 participants (8 men, 8 women) went through two, identical measurement sessions with ~ 48 h intervals, where maximal isometric plantar flexion (IMVC) and dynamic balance perturbations in horizontal, anterior-posterior direction were performed. Soleus muscle (SOL) neural modulation during balance perturbations were measured at 40, 70, 100 and 130 ms after ankle movement by using both H-reflex and V-wave methods. V-wave, which depicts the magnitude of efferent motoneuronal output (Bergmann et al. in JAMA 8:e77705, 2013), was significantly enhanced as early as 70 ms after the ankle movement. Both the ratio of M-wave-normalized V-wave (0.022-0.076, p < 0.001) and H-reflex (0.386-0.523, p < 0.001) increased significantly at the latency of 70 ms compared to the latency of 40 ms and remained at these levels at latter latencies. In addition, M-wave normalized V-wave/H-reflex ratio increased from 0.056 to 0.179 (p < 0.001). The repeatability of V-wave demonstrated moderate-to-substantial repeatability (ICC = 0.774-0.912) whereas the H-reflex was more variable showing fair-to-substantial repeatability (ICC = 0.581-0.855). As a conclusion, V-wave was enhanced already at 70 ms after the perturbation, which may indicate that increased activation of motoneurons occurred due to changes in descending drive. Since this is a short time-period for voluntary activity, some other, potentially subcortical responses might be involved for V-wave increment rather than voluntary drive. Our results addressed the usability and repeatability of V-wave method during dynamic conditions, which can be utilized in future studies.
Collapse
Affiliation(s)
- Samuli Nevanperä
- Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland.
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland.
| | - Nijia Hu
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Janne Avela
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| | - Jarmo M Piirainen
- Sports Technology Program, Faculty of Sport and Health Sciences, University of Jyväskylä, Kidekuja 2, 88610, Vuokatti, Finland
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Rautpohjankatu 8, PL35, 40700, Jyväskylä, Finland
| |
Collapse
|
2
|
|
3
|
Hight RE, Quarshie AT, Black CD. Voluntary muscle activation and evoked volitional-wave responses as a function of torque. J Electromyogr Kinesiol 2018; 41:1-8. [PMID: 29709787 DOI: 10.1016/j.jelekin.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/28/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022] Open
Abstract
INTRODUCTION This study employed a unique stimulation paradigm which allowed for the simultaneous assessment of voluntary activation levels (VA) via twitch-interpolation, and the evoked V-wave responses of the plantar flexors during submaximal and maximal contractions. Test-retest reliability was also examined. METHODS Fourteen participants repeated a stimulation protocol over four visits to assess VA and evoked V-wave amplitude across torque levels ranging from 20% to 100% MVC. MVC torque and EMG amplitude were also measured. RESULTS VA increased nonlinearly with torque production and plateaued by 80% MVC. V-wave amplitude increased linearly from 20% to 100% MVC. There were no differences in any dependent variable across visits (p > 0.05). VA demonstrated moderate to substantial reliability across all torque levels (ICC = 0.76-0.91) while V-wave amplitude exhibited fair to moderate reliability from 40% to 100% (ICC = 0.48-0.74). DISCUSSION We were able to reliably collect VA and the V-wave simultaneously in the plantar flexors. Collection of VA and V-wave during the same contraction provides distinct information regarding the contribution of motor-unit recruitment and descending cortico-spinal drive/excitability to force production.
Collapse
Affiliation(s)
- Robert E Hight
- The Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States.
| | - Alwyn T Quarshie
- The Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States
| | - Christopher D Black
- The Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States
| |
Collapse
|
4
|
Neva JL, Brown KE, Mang CS, Francisco BA, Boyd LA. An acute bout of exercise modulates both intracortical and interhemispheric excitability. Eur J Neurosci 2017; 45:1343-1355. [PMID: 28370664 DOI: 10.1111/ejn.13569] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
Abstract
Primary motor cortex (M1) excitability is modulated following a single session of cycling exercise. Specifically, short-interval intracortical inhibition and intracortical facilitation are altered following a session of cycling, suggesting that exercise affects the excitability of varied cortical circuits. Yet we do not know whether a session of exercise also impacts the excitability of interhemispheric circuits between, and other intracortical circuits within, M1. Here we present two experiments designed to address this gap in knowledge. In experiment 1, single and paired pulse transcranial magnetic stimulation (TMS) were used to measure intracortical circuits including, short-interval intracortical facilitation (SICF) tested at 1.1, 1.5, 2.7, 3.1 and 4.5 ms interstimulus intervals (ISIs), contralateral silent period (CSP) and interhemispheric interactions by measuring transcallosal inhibition (TCI) recorded from the abductor pollicus brevis muscles. All circuits were assessed bilaterally pre and two time points post (immediately, 30 min) moderate intensity lower limb cycling. SICF was enhanced in the left hemisphere after exercise at the 1.5 ms ISI. Also, CSP was shortened and TCI decreased bilaterally after exercise. In Experiment 2, corticospinal and spinal excitability were tested before and after exercise to investigate the locus of the effects found in Experiment 1. Exercise did not impact motor-evoked potential recruitment curves, Hoffman reflex or V-wave amplitudes. These results suggest that a session of exercise decreases intracortical and interhemispheric inhibition and increases facilitation in multiple circuits within M1, without concurrently altering spinal excitability. These findings have implications for developing exercise strategies designed to potentiate M1 plasticity and skill learning in healthy and clinical populations.
Collapse
Affiliation(s)
- J L Neva
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - K E Brown
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - C S Mang
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - B A Francisco
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - L A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Westbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
5
|
Papaiordanidou M, Mustacchi V, Stevenot JD, Vanoncini M, Martin A. Spinal and supraspinal mechanisms affecting torque development at different joint angles. Muscle Nerve 2015; 53:626-32. [DOI: 10.1002/mus.24895] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Papaiordanidou
- UMR7287, CNRS, Aix-Marseille University; 163 avenue de Luminy 13288 Marseille France
| | - Valérie Mustacchi
- UMR7287, CNRS, Aix-Marseille University; 163 avenue de Luminy 13288 Marseille France
| | - Jean-Damien Stevenot
- UMR7287, CNRS, Aix-Marseille University; 163 avenue de Luminy 13288 Marseille France
| | - Michele Vanoncini
- UMR7287, CNRS, Aix-Marseille University; 163 avenue de Luminy 13288 Marseille France
| | - Alain Martin
- INSERM U1093 Cognition, Action et Plasticité Sensorimotrice, Université de Bourgogne, UFR STAPS; Campus Universitaire Dijon France
| |
Collapse
|
6
|
Grosprêtre S, Martin A. Conditioning effect of transcranial magnetic stimulation evoking motor-evoked potential on V-wave response. Physiol Rep 2014; 2:2/12/e12191. [PMID: 25501438 PMCID: PMC4332197 DOI: 10.14814/phy2.12191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to examine the collision responsible for the volitional V‐wave evoked by supramaximal electrical stimulation of the motor nerve during voluntary contraction. V‐wave was conditioned by transcranial magnetic stimulation (TMS) over the motor cortex at several inter‐stimuli intervals (ISI) during weak voluntary plantar flexions (n = 10) and at rest for flexor carpi radialis muscle (FCR; n = 6). Conditioning stimulations were induced by TMS with intensity eliciting maximal motor‐evoked potential (MEPmax). ISIs used were ranging from −20 to +20 msec depending on muscles tested. The results showed that, for triceps surae muscles, conditioning TMS increased the V‐wave amplitude (~ +250%) and the associated mechanical response (~ +30%) during weak voluntary plantar flexion (10% of the maximal voluntary contraction ‐MVC) for ISIs ranging from +6 to +18 msec. Similar effect was observed at rest for the FCR with ISI ranging from +6 to +12 msec. When the level of force was increased from 10 to 50% MVC or the conditioning TMS intensity was reduced to elicit responses of 50% of MEPmax, a significant decrease in the conditioned V‐wave amplitude was observed for the triceps surae muscles, linearly correlated to the changes in MEP amplitude. The slope of this correlation, as well as the electro‐mechanical efficiency, was closed to the identity line, indicating that V‐wave impact at muscle level seems to be similar to the impact of cortical stimulation. All these results suggest that change in V‐wave amplitude is a great index to reflect changes in cortical neural drive addressed to spinal motoneurons. This study aimed to condition V‐wave by transcranial magnetic stimulation (TMS), allowing assessing the amplitude and time‐delays of the descending drive. Thus, by modulating TMS intensities, levels of voluntary contraction and inter‐stimuli intervals, we were able to estimate the possible site of the collision allowing recording of V‐wave and the link with motor‐evoked potential magnitude and V‐wave amplitude. These results bring new knowledge about the modulation of the V‐wave and its interpretation.
Collapse
Affiliation(s)
- Sidney Grosprêtre
- Faculté des sciences du sport, INSERM U1093, Université de Bourgogne, Dijon, France
| | - Alain Martin
- Faculté des sciences du sport, INSERM U1093, Université de Bourgogne, Dijon, France
| |
Collapse
|
7
|
McGuire J, Green LA, Gabriel DA. Task complexity and maximal isometric strength gains through motor learning. Physiol Rep 2014; 2:2/11/e12218. [PMID: 25428951 PMCID: PMC4255822 DOI: 10.14814/phy2.12218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study compared the effects of a simple versus complex contraction pattern on the acquisition, retention, and transfer of maximal isometric strength gains and reductions in force variability. A control group (N = 12) performed simple isometric contractions of the wrist flexors. An experimental group (N = 12) performed complex proprioceptive neuromuscular facilitation (PNF) contractions consisting of maximal isometric wrist extension immediately reversing force direction to wrist flexion within a single trial. Ten contractions were completed on three consecutive days with a retention and transfer test 2‐weeks later. For the retention test, the groups performed their assigned contraction pattern followed by a transfer test that consisted of the other contraction pattern for a cross‐over design. Both groups exhibited comparable increases in strength (20.2%, P < 0.01) and reductions in mean torque variability (26.2%, P < 0.01), which were retained and transferred. There was a decrease in the coactivation ratio (antagonist/agonist muscle activity) for both groups, which was retained and transferred (35.2%, P < 0.01). The experimental group exhibited a linear decrease in variability of the torque‐ and sEMG‐time curves, indicating transfer to the simple contraction pattern (P < 0.01). The control group underwent a decrease in variability of the torque‐ and sEMG‐time curves from the first day of training to retention, but participants returned to baseline levels during the transfer condition (P < 0.01). However, the difference between torque RMS error versus the variability in torque‐ and sEMG‐time curves suggests the demands of the complex task were transferred, but could not be achieved in a reproducible way. This study examines the effect of task complexity on the acquisition, retention, and transfer of increases in maximal strength and decreases in force variability, which is novel. Simple agonist‐only contractions are compared to a more complex reversal contraction pattern as used during proprioceptive neuromuscular facilitation (PNF). The goal was to determine if the more complex contraction pattern interferes with the strength gains and reduced variability by impeding the development of agonist‐antagonist coordination.
Collapse
Affiliation(s)
- Jessica McGuire
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Lara A Green
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - David A Gabriel
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
8
|
Cattagni T, Martin A, Scaglioni G. Is spinal excitability of the triceps surae mainly affected by muscle activity or body position? J Neurophysiol 2014; 111:2525-32. [DOI: 10.1152/jn.00455.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine how muscle activity and body orientation contribute to the triceps surae spinal transmission modulation, when moving from a sitting to a standing position. Maximal Hoffmann-reflex (Hmax) and motor potential (Mmax) were evoked in the soleus (SOL), medial and lateral gastrocnemius in 10 male subjects and in three conditions, passive sitting, active sitting and upright standing, with the same SOL activity in active sitting and upright standing. Moreover volitional wave (V) was evoked in the two active conditions (i.e., active sitting and upright standing). The results showed that SOL Hmax/Mmax was lower in active sitting than in passive sitting, while for the gastrocnemii it was not significantly altered. For the three plantar flexors, Hmax/Mmax was lower in upright standing than in active sitting, whereas V/Mmax was not modulated. SOL H-reflex is therefore affected by the increase in muscle activity and change in body orientation, while, in the gastrocnemii, it was only affected by a change in posture. In conclusion, passing from a sitting to a standing position affects the Hmax/Mmax of the whole triceps surae, but the mechanisms responsible for this change differ among the synergist muscles. The V/Mmax does not change when upright stance is assumed. This means that the increased inhibitory activity in orthostatic position is compensated by an increased excitatory inflow to the α-motoneurons of central and/or peripheral origin.
Collapse
Affiliation(s)
- T. Cattagni
- Institut National de la Santé et de la Recherche Médicale 1093, Faculty of Sport Science, University of Burgundy, Dijon, France
| | - A. Martin
- Institut National de la Santé et de la Recherche Médicale 1093, Faculty of Sport Science, University of Burgundy, Dijon, France
| | - G. Scaglioni
- Institut National de la Santé et de la Recherche Médicale 1093, Faculty of Sport Science, University of Burgundy, Dijon, France
| |
Collapse
|