1
|
Ginatempo F, Loi N, Rothwell JC, Deriu F. Sensorimotor integration in cranial muscles tested by short- and long-latency afferent inhibition. Clin Neurophysiol 2024; 157:15-24. [PMID: 38016262 DOI: 10.1016/j.clinph.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE To compressively investigate sensorimotor integration in the cranial-cervical muscles in healthy adults. METHODS Short- (SAI) and long-latency afferent (LAI) inhibition were probed in the anterior digastric (AD), the depressor anguli oris (DAO) and upper trapezius (UT) muscles. A transcranial magnetic stimulation pulse over primary motor cortex was preceded by peripheral stimulation delivered to the trigeminal, facial and accessory nerves using interstimulus intervals of 15-25 ms and 100-200 ms for SAI and LAI respectively. RESULTS In the AD, both SAI and LAI were detected following trigeminal nerve stimulation, but not following facial nerve stimulation. In the DAO, SAI was observed only following trigeminal nerve stimulation, while LAI depended only on facial nerve stimulation, only at an intensity suprathreshold for the compound motor action potential (cMAP). In the UT we could only detect LAI following accessory nerve stimulation at an intensity suprathreshold for a cMAP. CONCLUSIONS The results suggest that integration of sensory inputs with motor output is profoundly influenced by the type of sensory afferent involved and by the functional role played by the target muscle. SIGNIFICANCE Data indicate the importance of taking into account the sensory receptors involved as well as the function of the target muscle when studying sensorimotor integration, both in physiological and neurological conditions.
Collapse
Affiliation(s)
- Francesca Ginatempo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU Sassari, Sassari, Italy.
| |
Collapse
|
2
|
Van Malderen S, Hehl M, Verstraelen S, Swinnen SP, Cuypers K. Dual-site TMS as a tool to probe effective interactions within the motor network: a review. Rev Neurosci 2023; 34:129-221. [PMID: 36065080 DOI: 10.1515/revneuro-2022-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
Dual-site transcranial magnetic stimulation (ds-TMS) is well suited to investigate the causal effect of distant brain regions on the primary motor cortex, both at rest and during motor performance and learning. However, given the broad set of stimulation parameters, clarity about which parameters are most effective for identifying particular interactions is lacking. Here, evidence describing inter- and intra-hemispheric interactions during rest and in the context of motor tasks is reviewed. Our aims are threefold: (1) provide a detailed overview of ds-TMS literature regarding inter- and intra-hemispheric connectivity; (2) describe the applicability and contributions of these interactions to motor control, and; (3) discuss the practical implications and future directions. Of the 3659 studies screened, 109 were included and discussed. Overall, there is remarkable variability in the experimental context for assessing ds-TMS interactions, as well as in the use and reporting of stimulation parameters, hindering a quantitative comparison of results across studies. Further studies examining ds-TMS interactions in a systematic manner, and in which all critical parameters are carefully reported, are needed.
Collapse
Affiliation(s)
- Shanti Van Malderen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Melina Hehl
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stefanie Verstraelen
- Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Koen Cuypers
- Department of Movement Sciences, Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Heverlee 3001, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek 3590, Belgium
| |
Collapse
|
3
|
Jordon MK, Stewart JC, Silfies SP, Beattie PF. Task-Based Functional Connectivity and Blood-Oxygen-Level-Dependent Activation During Within-Scanner Performance of Lumbopelvic Motor Tasks: A Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2022; 16:816595. [PMID: 35308606 PMCID: PMC8924587 DOI: 10.3389/fnhum.2022.816595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
There are a limited number of neuroimaging investigations into motor control of the lumbopelvic musculature. Most investigation examining motor control of the lumbopelvic musculature utilize transcranial magnetic stimulation (TMS) and focus primarily on the motor cortex. This has resulted in a dearth of knowledge as it relates to how other regions of the brain activate during lumbopelvic movement. Additionally, task-based functional connectivity during lumbopelvic movements has not been well elucidated. Therefore, we used functional magnetic resonance imaging (fMRI) to examine brain activation and ROI-to-ROI task-based functional connectivity in 19 healthy individuals (12 female, age 29.8 ± 4.5 years) during the performance of three lumbopelvic movements: modified bilateral bridge, left unilateral bridge, and right unilateral bridge. The whole brain analysis found robust, bilateral activation within the motor regions of the brain during the bilateral bridge task, and contralateral activation of the motor regions during unilateral bridging tasks. Furthermore, the ROI-to-ROI analysis demonstrated significant connectivity of a motor network that included the supplemental motor area, bilateral precentral gyrus, and bilateral cerebellum regardless of the motor task performed. These data suggest that while whole brain activation reveals unique patterns of activation across the three tasks, functional connectivity is very similar. As motor control of the lumbopelvic area is of high interest to those studying low back pain (LBP), this study can provide a comparison for future research into potential connectivity changes that occur in individuals with LBP.
Collapse
Affiliation(s)
- Max K. Jordon
- Department of Physical Therapy, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | | | - Sheri P. Silfies
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States
- McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC, United States
| | - Paul F. Beattie
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
4
|
Lack of evidence for interhemispheric inhibition in the lower face primary motor cortex. Clin Neurophysiol 2019; 130:1917-1925. [DOI: 10.1016/j.clinph.2019.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 11/18/2022]
|
5
|
The unsolved role of heightened connectivity from the unaffected hemisphere to paretic arm muscles in chronic stroke. Clin Neurophysiol 2019; 130:781-788. [PMID: 30925310 DOI: 10.1016/j.clinph.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/06/2019] [Accepted: 02/27/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Ipsilateral connectivity from the non-stroke hemisphere to paretic arm muscles appears to play little role in functional recovery, which instead depends on contralateral connectivity from the stroke hemisphere. Yet the incidence of ipsilateral projections in stroke survivors is often reported to be higher than normal. We tested this directly using a sensitive measure of connectivity to proximal arm muscles. METHOD TMS of the stroke and non-stroke motor cortex evoked responses in pre-activated triceps and deltoid muscles of 17 stroke survivors attending reaching training. Connectivity was defined as a clear MEP or a short-latency silent period in ongoing EMG in ≥ 50% of stimulations. We measured reaching accuracy at baseline, improvement after training and upper limb Fugl-Meyer (F-M) score. RESULTS Incidence of ipsilateral connections to triceps (47%) and deltoid (58%) was high, but unrelated to baseline reaching accuracy and F-M scores. Instead, these were related to contralateral connectivity from the stroke hemisphere. Absolute but not proportional improvement after training was greater in patients with ipsilateral responses. CONCLUSIONS Despite enhanced ipsilateral connectivity, arm function and learning was related most strongly to contralateral pathway integrity from the stroke hemisphere. SIGNIFICANCE Further work is needed to decipher the role of ipsilateral connections.
Collapse
|
6
|
Jean-Charles L, Nepveu JF, Deffeyes JE, Elgbeili G, Dancause N, Barthélemy D. Interhemispheric interactions between trunk muscle representations of the primary motor cortex. J Neurophysiol 2017; 118:1488-1500. [PMID: 28615339 DOI: 10.1152/jn.00778.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 11/22/2022] Open
Abstract
Unilateral arm movements require trunk stabilization through bilateral contraction of axial muscles. Interhemispheric interactions between primary motor cortices (M1) could enable such coordinated contractions, but these mechanisms are largely unknown. Using transcranial magnetic stimulation (TMS), we characterized interhemispheric interactions between M1 representations of the trunk-stabilizing muscles erector spinae at the first lumbar vertebra (ES L1) during a right isometric shoulder flexion. These interactions were compared with those of the anterior deltoid (AD), the main agonist in this task, and the first dorsal interosseous (FDI). TMS over the right M1 elicited ipsilateral silent periods (iSP) in all three muscles on the right side. In ES L1, but not in AD or FDI, ipsilateral motor evoked potential (iMEP) could precede the iSP or replace it. iMEP amplitude was not significantly different whether ES L1 was used to stabilize the trunk or was voluntarily contracted. TMS at the cervicomedullary junction showed that the size of cervicomedullary evoked potential was unchanged during the iSP but increased during iMEP, suggesting that the iSP, but not the iMEP, is due to intracortical mechanisms. Using a dual-coil paradigm with two coils over the left and right M1, interhemispheric inhibition could be evoked at interstimulus intervals of 6 ms in ES L1 and 8 ms in AD and FDI. Together, these results suggest that interhemispheric inhibition is dominant when axial muscles are involved in a stabilizing task. The ipsilateral facilitation could be evoked by ipsilateral or subcortical pathways and could be used depending on the role axial muscles play in the task.NEW & NOTEWORTHY The mechanisms involved in the bilateral coordination of axial muscles during unilateral arm movement are poorly understood. We thus investigated the nature of interhemispheric interactions in axial muscles during arm motor tasks in healthy subjects. By combining different methodologies, we showed that trunk muscles receive both inhibitory and facilitatory cortical outputs during activation of arm muscles. We propose that inhibition may be conveyed mainly through interhemispheric mechanisms and facilitation by subcortical mechanisms or ipsilateral pathways.
Collapse
Affiliation(s)
- Loyda Jean-Charles
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, site de l'Institut de réadaptation Gingras-Lindsay-de-Montréal, Montreal, Quebec, Canada
| | - Jean-Francois Nepveu
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, site de l'Institut de réadaptation Gingras-Lindsay-de-Montréal, Montreal, Quebec, Canada
| | - Joan E Deffeyes
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, site de l'Institut de réadaptation Gingras-Lindsay-de-Montréal, Montreal, Quebec, Canada
| | - Guillaume Elgbeili
- Recherche en Schizophrénie et troubles neurodéveloppementaux, Institut universitaire en santé mentale Douglas, Montreal, Quebec, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Dorothy Barthélemy
- Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, site de l'Institut de réadaptation Gingras-Lindsay-de-Montréal, Montreal, Quebec, Canada; .,Ecole de réadaptation, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|
7
|
Shin SS, Pelled G. Novel Neuromodulation Techniques to Assess Interhemispheric Communication in Neural Injury and Neurodegenerative Diseases. Front Neural Circuits 2017; 11:15. [PMID: 28337129 PMCID: PMC5343068 DOI: 10.3389/fncir.2017.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
Abstract
Interhemispheric interaction has a major role in various neurobehavioral functions. Its disruption is a major contributor to the pathological changes in the setting of brain injury such as traumatic brain injury, peripheral nerve injury, and stroke, as well as neurodegenerative diseases. Because interhemispheric interaction has a crucial role in functional consequence in these neuropathological states, a review of noninvasive and state-of-the-art molecular based neuromodulation methods that focus on or have the potential to elucidate interhemispheric interaction have been performed. This yielded approximately 170 relevant articles on human subjects or animal models. There has been a recent surge of reports on noninvasive methods such as transcranial magnetic stimulation and transcranial direct current stimulation. Since these are noninvasive techniques with little to no side effects, their widespread use in clinical studies can be easily justified. The overview of novel neuromodulation methods and how they can be applied to study the role of interhemispheric communication in neural injury and neurodegenerative disease is provided. Additionally, the potential of each method in therapeutic use as well as investigating the pathophysiology of interhemispheric interaction in neurodegenerative diseases and brain injury is discussed. New technologies such as transcranial magnetic stimulation or transcranial direct current stimulation could have a great impact in understanding interhemispheric pathophysiology associated with acquired injury and neurodegenerative diseases, as well as designing improved rehabilitation therapies. Also, advances in molecular based neuromodulation techniques such as optogenetics and other chemical, thermal, and magnetic based methods provide new capabilities to stimulate or inhibit a specific brain location and a specific neuronal population.
Collapse
Affiliation(s)
- Samuel S Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Galit Pelled
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
8
|
Doeltgen SH, Young J, Bradnam LV. Anodal Direct Current Stimulation of the Cerebellum Reduces Cerebellar Brain Inhibition but Does Not Influence Afferent Input from the Hand or Face in Healthy Adults. THE CEREBELLUM 2017; 15:466-74. [PMID: 26283524 DOI: 10.1007/s12311-015-0713-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The cerebellum controls descending motor commands by outputs to primary motor cortex (M1) and the brainstem in response to sensory feedback. The cerebellum may also modulate afferent input en route to M1 and the brainstem. OBJECTIVE The objective of this study is to determine if anodal transcranial direct current stimulation (tDCS) to the cerebellum influences cerebellar brain inhibition (CBI), short afferent inhibition (SAI) and trigeminal reflexes (TRs) in healthy adults. METHODS Data from two studies evaluating effects of cerebellar anodal and sham tDCS are presented. The first study used a twin coil transcranial magnetic stimulation (TMS) protocol to investigate CBI and combined TMS and cutaneous stimulation of the digit to assess SAI. The second study evaluated effects on trigemino-cervical and trigemino-masseter reflexes using peripheral nerve stimulation of the face. RESULTS Fourteen right-handed healthy adults participated in experiment 1. CBI was observed at baseline and was reduced by anodal cerebellar DCS only (P < 0.01). There was SAI at interstimulus intervals of 25 and 30 ms at baseline (both P < 0.0001), but cerebellar tDCS had no effect. Thirteen right-handed healthy adults participated in experiment 2. Inhibitory reflexes were evoked in the ipsilateral masseter and sternocleidomastoid muscles. There was no effect of cerebellar DCS on either reflex. CONCLUSIONS Anodal DCS reduced CBI but did not change SAI or TRs in healthy adults. These results require confirmation in individuals with neurological impairment.
Collapse
Affiliation(s)
- Sebastian H Doeltgen
- Swallowing Rehabilitation Research Laboratory, School of Health Sciences, Flinders University, Adelaide, Australia
- Department of Speech Pathology and Audiology, School of Health Sciences, Flinders University, Adelaide, Australia
| | - Jessica Young
- Swallowing Rehabilitation Research Laboratory, School of Health Sciences, Flinders University, Adelaide, Australia
- Department of Speech Pathology and Audiology, School of Health Sciences, Flinders University, Adelaide, Australia
| | - Lynley V Bradnam
- Discipline of Physiotherapy, Graduate School of Health, University of Technology Sydney, Sydney, Australia.
- Discipline of Physiotherapy, School of Health Sciences, Flinders University, Adelaide, Australia.
| |
Collapse
|
9
|
Batbayar Y, Uga D, Nakazawa R, Sakamoto M. Effect of various hand position widths on scapular stabilizing muscles during the push-up plus exercise in healthy people. J Phys Ther Sci 2015; 27:2573-6. [PMID: 26357442 PMCID: PMC4563317 DOI: 10.1589/jpts.27.2573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to determine the effect of various hand position
widths during the push-up plus (PUP) exercise on the activity of the scapular stabilizing
muscles and other upper-extremity muscles involved in the exercise. [Subjects and Methods]
Nine healthy men participated in our study. The PUP exercise was performed on a stable
surface in seven different hand positions, namely shoulder width (SW), and narrower SW
(NSW) and wider SW (WSW) at 10%, 20%, and 30%. Surface electromyography was used to
measure the muscle activities and muscle ratio of the upper trapezius (UT), middle
trapezius, lower trapezius (LT), serratus anterior (SA), pectoralis major, deltoid
anterior, latissimus dorsi (LD), and triceps muscles. [Results] The SA and LD muscle
activities significantly decreased in the 30% NSW and 20% WSW hand positions,
respectively. The UT/LT muscle ratio significantly increased in the 30% WSW hand position.
[Conclusion] The results of this study suggest that during the PUP exercise, the SW hand
position should be used. In the 30% NSW hand position, the SA muscle activity decreased,
and the UT/ LT ratio increased in the 30% WSW hand position.
Collapse
Affiliation(s)
| | - Daisuke Uga
- Graduate School of Health Sciences, Gunma University, Japan
| | - Rie Nakazawa
- Graduate School of Health Sciences, Gunma University, Japan
| | | |
Collapse
|