1
|
Ho CY, Sum RKW, Yang Y. Effects of stiffness-altered sport compression garments on lower-limb biomechanics in cutting maneuvers. J Biomech 2024; 175:112292. [PMID: 39191073 DOI: 10.1016/j.jbiomech.2024.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Athletes commonly use compression garments (CGs) for perceived effectiveness in preventing injury occurrence. However, limited evidence is available on whether lower-limb CGs reduce the risk of injury. This study aimed at (1) evaluating the effects of CGs on mitigating the risk factors of cutting-related knee injuries; (2) identifying undesirable side-effects of CGs on other joints and cutting performance; and (3) identifying possible interactions between sex and condition. 62 healthy adults performed pre-planned 90˚ cutting tasks under four conditions: control, knee sleeves, placebo leggings and stiffness-altered leggings. Joint angle at initial contact, range of motion, moments, and ground reaction force were measured. A mixed two-way (sex*condition) ANOVA was performed, followed by post-hoc comparisons and subset analyses for sexes. Results showed that the leggings restricted hip sagittal (45.4 ± 1.3 vs. control 50.0 ± 1.3˚, p = 0.001) and rotational (16.8 ± 0.8 vs. control 22.5 ± 1.1˚, p < 0.001) motion. At initial contact, the stiffness-altered leggings reduced knee valgus (0.4 ± 0.8 vs. control -2.1 ± 0.8˚, p = 0.031). However, the altered alignment of lower-limb joints did not reduce multiplanar knee joint moments (p > 0.05). CGs were not effective protective equipment yet. There was no significant difference between knee sleeves and control, nor between leggings conditions (p > 0.05). Force plate measurements, such as increased rate of force development (stiffness-altered 42.6 ± 1.1 & placebo 42.9 ± 1.1 vs. control 39.9 ± 1.0 BW/s, p < 0.028), implied the possibility of performance enhancement through CGs. While further investigations on the optimal compression and stiffness alterations are warranted, athletes are recommended to be aware of the discrepancies between the claimed and actual biomechanical effects of CGs.
Collapse
Affiliation(s)
- Cheuk-Yin Ho
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Kim-Wai Sum
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yijian Yang
- Department of Sports Science and Physical Education, Faculty of Education, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Bolt R, Heuvelmans P, Benjaminse A, Robinson MA, Gokeler A. An ecological dynamics approach to ACL injury risk research: a current opinion. Sports Biomech 2024; 23:1592-1605. [PMID: 34375159 DOI: 10.1080/14763141.2021.1960419] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023]
Abstract
Research of non-contact anterior cruciate ligament (ACL) injury risk aims to identify modifiable risk factors that are linked to the mechanisms of injury. Information from these studies is then used in the development of injury prevention programmes. However, ACL injury risk research often leans towards methods with three limitations: 1) a poor preservation of the athlete-environment relationship that limits the generalisability of results, 2) the use of a strictly biomechanical approach to injury causation that is incomplete for the description of injury mechanisms, 3) and a reductionist analysis that neglects profound information regarding human movement. This current opinion proposes three principles from an ecological dynamics perspective that address these limitations. First, it is argued that, to improve the generalisability of findings, research requires a well-preserved athlete-environment relationship. Second, the merit of including behaviour and the playing situation in the model of injury causation is presented. Third, this paper advocates that research benefits from conducting non-reductionist analysis (i.e., more holistic) that provides profound information regarding human movement. Together, these principles facilitate an ecological dynamics approach to injury risk research that helps to expand our understanding of injury mechanisms and thus contributes to the development of preventative measures.
Collapse
Affiliation(s)
- Ruben Bolt
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pieter Heuvelmans
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne Benjaminse
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- School of Sport Studies, Hanze University Groningen, Groningen, The Netherlands
| | - Mark A Robinson
- Research Institute for Sport and Exercise Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Alli Gokeler
- Exercise Science and Neuroscience Unit, Department Exercise & Health, Paderborn University, Paderborn, Germany
- Amsterdam Collaboration for Health and Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Department of Sports Medicine, OCON Centre of Orthopaedic Surgery and Sports Medicine, Hengelo, The Netherlands
| |
Collapse
|
3
|
Kadlec D, Jordan MJ, Alderson J, Nimphius S. Examining the Effects of Dynamic and Isometric Resistance Training on Knee Joint Kinetics During Unplanned Sidesteps in Elite Female Athletes. J Strength Cond Res 2024:00124278-990000000-00538. [PMID: 39186066 DOI: 10.1519/jsc.0000000000004923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
ABSTRACT Kadlec, D, Jordan, MJ, Alderson, J, and Nimphius, S. Examining the effects of dynamic and isometric resistance training on knee joint kinetics during unplanned sidesteps in elite female athletes. J Strength Cond Res XX(X): 000-000, 2024-The purpose of this study was to examine the effects of a 4-week block of isometric (isometricRT) and dynamic resistance training (dynamicRT) on kinetic variables associated with anterior cruciate ligament (ACL) injury risk during unplanned sidesteps in elite female athletes. Twenty-one elite female athletes competing for a women's international rugby union team were recruited with 15 (n = 15; age: 23.4 ± 4.7 years; 170.7 ± 8.4 cm; 84.4 ± 15.4 kg) completing assessment of knee flexion moment, knee valgus moment (KVM), knee internal rotation moment (KIRM), knee joint power during unplanned sidesteps, and lower limb strength before and after a 4-week intervention. Linear mixed effects models and one-dimensional statistical parametric mapping assessed the effect of the interventions. Statistical significance was set at α = 0.05. Postintervention the isometricRT group revealed reduced peak KVM during early stance (p = 0.04) while the dynamicRT group decreased peak KIRM (p < 0.01) and KIRM over 8.8-86.6% (p < 0.01) and 96.9-98.5% (p = 0.047). An exploratory combined group analysis revealed reductions in KVM over 7.9-21.8% (p = 0.002) and in KIRM over 8.3-90.5% (p < 0.01) and 96.2-98.5% (p = 0.046). Most lower limb isometric and dynamic strength measures increased after both resistance training interventions. Overall, both groups increased lower-body maximum strength while reducing kinetic knee joint variables associated with ACL injury risk during unplanned sidesteps. These results highlight the importance of increasing single-joint and multijoint strength in female athletes to mitigate the mechanical knee joint demands during sidestepping.
Collapse
Affiliation(s)
- Daniel Kadlec
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Matthew J Jordan
- Faculty of Kinesiology, Sport Medicine Centre, University of Calgary, Calgary, Canada; and
| | - Jacqueline Alderson
- UWA Tech & Policy Lab, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophia Nimphius
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
4
|
Welling W. Return to sports after an ACL reconstruction in 2024 - A glass half full? A narrative review. Phys Ther Sport 2024; 67:141-148. [PMID: 38749349 DOI: 10.1016/j.ptsp.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024]
Abstract
A successful return to sports (RTS) after an anterior cruciate ligament reconstruction (ACLR) is multifactorial, and therefore difficult and challenging. Unfortunately, low percentages of patients RTS, and for those who succeed, one-fifth of patients will sustain a second ACL injury. Over the past years, test batteries were developed to assess whether patients can RTS with a low risk for a second ACL injury risk. Low rates of patients who meet RTS criteria were found, coupled with the insufficiency of current RTS test batteries in predicting second ACL injuries suggesting poor sensitivity. The result of an RTS test is likely to reflect the content of a rehabilitation program, raising critical questions regarding what we are offering patients within the rehabilitation programme. Are we preparing our patients well enough for the high demands of complex situations within pivoting team sports? This narrative review offers insights from key lessons of the last 15 years on 1) RTS testing, 2) the content of rehabilitation, and 3) the RTS continuum, all from a "helicopter perspective".
Collapse
Affiliation(s)
- Wouter Welling
- Pro-F Fysiotherapie, Kotkampweg 65, 7531 AS, Enschede, the Netherlands; University of Groningen, University Medical Center Groningen, Center for Human Movement Science, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
5
|
Donelon TA, Edwards J, Brown M, Jones PA, O'Driscoll J, Dos'Santos T. Differences in Biomechanical Determinants of ACL Injury Risk in Change of Direction Tasks Between Males and Females: A Systematic Review and Meta-Analysis. SPORTS MEDICINE - OPEN 2024; 10:29. [PMID: 38561438 PMCID: PMC10984914 DOI: 10.1186/s40798-024-00701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Change of direction (COD) movements are associated with non-contact anterior cruciate ligament (ACL) injuries in multidirectional sports. Females appear at increased risk compared to males, which could be attributable to whole body kinematic strategies and greater multiplanar knee joint loads (KJLs) during COD which can increase ACL loading. OBJECTIVE The aim of this systematic review and meta-analysis was to examine and quantitatively synthesise the evidence for differences between males and females regarding KJLs and their biomechanical determinants (whole body kinematic strategies determining KJLs) during COD tasks. METHODS Databases including SPORTDiscus, Web of Science, and PubMed were systematically searched (July 2021-June 2023) for studies that compared differences in knee joint loads and biomechanical determinants of KJLs during COD between males and females. Inclusion criteria were: (1) females and males with no prior history of ACL injury (18-40 years); (2) examined biomechanical determinants of KJLs and/ or KJLs during COD tasks > 20°; (3) compared ≥ 1 outcome measure between males and females. Studies published between 2000 and 2023 examining a cutting task > 20° with a preceding approach run that compared KJLs or the whole body multiplanar kinematics associated with them, between sexes, using three-dimensional motion analysis. RESULTS This meta-analysis included 17 studies with a pooled sample size of 451 participants (227 males, 224 females). Meta-analysis revealed females displayed significantly less peak knee flexion during stance (SMD: 0.374, 95% CI 0.098-0.649, p = 0.008, I2: 0%); greater knee abduction at initial contact (IC) (SMD: 0.687, 95% CI 0.299-1.076, p = 0.001, I2: 55%); less hip internal rotation (SMD: 0.437, 95% CI 0.134-0.741, p = 0.005, I2: 34%) and hip abduction at IC (SMD: -0.454, 95% CI 0.151-0.758, p = 0.003, I2: 33%). No significant differences were observed between males and females for any internal or externally applied KJLs. All retrieved studies failed to control for strength, resistance training or skill history status. CONCLUSION No differences were observed in KJLs between males and females despite females displaying greater knee abduction at IC and less peak knee flexion during the stance phase of CODs, which are visual characteristics of non-contact ACL injury. Further research is required to examine if this translates to a similar injury risk, considering morphological differences in strain characteristics of the ACL between males and females. This observation may in part explain the disproportionate ACL injury incidence in female multidirectional athletes. Further higher quality controlled research is required whereby participants are matched by skill training history, resistance training history and strength status to ensure an appropriate comparison between males and females.
Collapse
Affiliation(s)
- Thomas A Donelon
- Section of Sport Section of Sport, Exercise and Rehabilitation Sciences, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1Q, UK.
| | - Jamie Edwards
- Section of Sport Section of Sport, Exercise and Rehabilitation Sciences, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1Q, UK
| | - Mathew Brown
- Section of Sport Section of Sport, Exercise and Rehabilitation Sciences, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1Q, UK
| | - Paul A Jones
- School of Health Sciences, C702 Allerton Building, University of Salford, Salford, M6 6PU, UK
| | - Jamie O'Driscoll
- Section of Sport Section of Sport, Exercise and Rehabilitation Sciences, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1Q, UK
| | - Thomas Dos'Santos
- Department of Sport and Exercise Sciences | Manchester Metropolitan University, 2.01 Institute of Sport, 99 Oxford Road, Manchester, M1 7EL, UK
| |
Collapse
|
6
|
McFadden C, Strike S, Daniels KAJ. Are inter-limb differences in change of direction velocity and angle associated with inter-limb differences in kinematics and kinetics following anterior cruciate ligament reconstruction? Gait Posture 2024; 109:1-8. [PMID: 38232543 DOI: 10.1016/j.gaitpost.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/17/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Quantifying inter-limb differences in kinematics and kinetics during change of direction is proposed as a means of monitoring rehabilitation following anterior cruciate ligament reconstruction (ACLR). Velocity and centre of mass (CoM) deflection angle are fundamental task descriptors that influence kinematics and kinetics during change of direction. Inter-limb differences in approach velocity and CoM deflection angle have been identified following ACLR and may contribute to the presence of inter-limb differences in kinematics and kinetics during change of direction. RESEARCH QUESTION The aim of this study was to quantify the proportion of variance in kinematic and kinetic inter-limb differences attributable to inter-limb differences in approach velocity and centre of mass deflection angle during a change of direction task. METHODS A cohort of 192 patients (male, 23.8 ± 3.6 years, 6.3 ± 0.4 months post primary ACLR) completed a pre-planned 90° change of direction task on both their operated and non-operated limb. Inter-limb differences in approach velocity and CoM deflection angle were calculated alongside lower-extremity kinematic and kinetic variables. The relationship between inter-limb differences in task-level variables and inter-limb differences in kinematic and kinetic variables was examined using linear regression models. Kinematic and kinetic inter-limb differences were adjusted for inter-limb differences in approach velocity and CoM deflection angle. Adjusted and unadjusted inter-limb differences were submitted to one sample t-tests. RESULTS Inter-limb differences in approach velocity and centre of mass deflection angle explained 3 - 60% of the variance in kinematic and kinetic inter-limb differences. Statistical inferences remained consistent between adjusted and unadjusted conditions with the exception of hip flexion angle. SIGNIFICANCE Inter-limb differences in task-level features explain a large proportion of the variance in inter-limb differences in several kinematic and kinetic variables. Accounting for this variation reduced the magnitude of kinematic and kinetic inter-limb differences comparable to those previously observed in normative cohorts.
Collapse
Affiliation(s)
- Ciarán McFadden
- Sports Medicine Research Department, Sports Surgery Clinic, Dublin, Ireland; Department of Life Sciences, University of Roehampton, London, UK.
| | - Siobhán Strike
- Department of Life Sciences, University of Roehampton, London, UK
| | - Katherine A J Daniels
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
7
|
Ekdahl M, Ulman S, Butler L. Relationship of Knee Abduction Moment to Trunk and Lower Extremity Segment Acceleration during Sport-Specific Movements. SENSORS (BASEL, SWITZERLAND) 2024; 24:1454. [PMID: 38474989 DOI: 10.3390/s24051454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The knee abduction moment (KAM) has been identified as a significant predictor of anterior cruciate ligament (ACL) injury risk; however, the cost and time demands associated with collecting three-dimensional (3D) kinetic data have prompted the need for alternative solutions. Wearable inertial measurement units (IMUs) have been explored as a potential solution for quantitative on-field assessment of injury risk. Most previous work has focused on angular velocity data, which are highly susceptible to bias and noise relative to acceleration data. The purpose of this pilot study was to assess the relationship between KAM and body segment acceleration during sport-specific movements. Three functional tasks were selected to analyze peak KAM using optical motion capture and force plates as well as peak triaxial segment accelerations using IMUs. Moderate correlations with peak KAM were observed for peak shank acceleration during single-leg hop; peak trunk, thigh, and shank accelerations during a deceleration task; and peak trunk, pelvis, and shank accelerations during a 45° cut. These findings provide preliminary support for the use of wearable IMUs to identify peak KAM during athletic tasks.
Collapse
Affiliation(s)
| | - Sophia Ulman
- Scottish Rite for Children, Frisco, TX 75034, USA
- Department of Orthopaed Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren Butler
- Nicole Wertheim College of Nursing and Health Sciences, Florida International University, Miami, FL 33199, USA
- Nicklaus Children's Hospital, Miami, FL 33155, USA
| |
Collapse
|
8
|
Cross J, Kung SM, Welch N. Assessing the reliability of biomechanical variables during a horizontal deceleration task in healthy adults. J Sports Sci 2024; 42:263-269. [PMID: 38484285 DOI: 10.1080/02640414.2024.2327874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/01/2024] [Indexed: 04/23/2024]
Abstract
Horizontal deceleration technique is an underpinning factor to musculoskeletal injury risk and performance in multidirectional sport. This study primarily assessed within- and between-session reliability of biomechanical and performance-based aspects of a horizontal deceleration technique and secondarily investigated the effects of limb dominance on reliability. Fifteen participants completed four horizontal decelerations on each leg during test and retest sessions. A three-dimensional motion analysis system was used to collect kinetic and kinematic data. Completion time, ground contact time, rate of horizontal deceleration, minimum centre of mass height, peak eccentric force, impulse ratio, touchdown distance, sagittal plane foot and knee angles at initial contact, maximum sagittal plane thorax angle, and maximum knee flexion moment were assessed. Coefficients of variation (COV) and intraclass correlation coefficients (ICC) were used to assess within- and between-session reliability, respectively. Seven variables showed "great" within-session reliability bilaterally (COV ≤9.13%). ICC scores were 'excellent' (≥0.91; n = 4), or 'good' (0.76-0.89; n = 7), bilaterally. Limb dominance affected five variables; three were more reliable for the dominant leg. This horizontal deceleration task was reliable for most variables, with little effect of limb dominance on reliability. This deceleration task may be reliably used to assess and track changes in deceleration technique in healthy adults.
Collapse
Affiliation(s)
- Joshua Cross
- Sports Medicine Department, UPMC Sports Surgery Clinic, Dublin, Ireland
| | - Stacey M Kung
- Sports Medicine Department, UPMC Sports Surgery Clinic, Dublin, Ireland
| | - Neil Welch
- Sports Medicine Department, UPMC Sports Surgery Clinic, Dublin, Ireland
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| |
Collapse
|
9
|
Mulligan CM, Johnson ST, Pollard CD, Hannigan KS, Athanasiadis D, Norcross MF. Deceleration Profiles Between the Penultimate and Final Steps of Planned and Reactive Side-Step Cutting. J Athl Train 2024; 59:173-181. [PMID: 37648221 PMCID: PMC10895398 DOI: 10.4085/1062-6050-0007.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
CONTEXT Noncontact anterior cruciate ligament injury often occurs during rapid deceleration and change-of-direction maneuvers. These activities require an athlete to generate braking forces to slow down the center of mass and change direction in a dynamic environment. During preplanned cutting, athletes can use the penultimate step for braking before changing direction, resulting in less braking demand during the final step. During reactive cutting, athletes use different preparatory movement strategies during the penultimate step when planning time is limited. However, possible differences in the deceleration profile between the penultimate and final steps of preplanned and reactive side-step cuts remain unknown. OBJECTIVE To comprehensively evaluate deceleration during the penultimate and final steps of preplanned and reactive cutting. DESIGN Cross-sectional study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Thirty-six women (age = 20.9 ± 1.7 years, height = 1.66 ± 0.07 m, mass = 62.4 ± 8.7 kg). INTERVENTION Participants completed 90° side-step cutting maneuvers under preplanned and reactive conditions. MAIN OUTCOME MEASURE(S) Approach velocity, velocity at initial contact, and cutting angle were compared between conditions. Stance time, deceleration time, and biomechanical indicators of deceleration were assessed during the penultimate and final steps of preplanned and reactive 90° cuts. Separate repeated-measures analysis-of-variance models were used to assess the influence of step, condition, and their interaction on the biomechanical indicators of deceleration. RESULTS Approach velocity (P = .69) and velocity at initial contact of the penultimate step (P = .33) did not differ between conditions. During reactive cutting, participants achieved a smaller cutting angle (P < .001). We identified a significant step-by-condition interaction for all biomechanical indicators of deceleration (P values < .05). CONCLUSIONS A lack of planning time resulted in less penultimate step braking and greater final step braking during reactive cutting. As a result, participants exhibited a decreased cutting angle and longer stance time during the final step of reactive cutting. Improving an athlete's ability to respond to an external stimulus may facilitate a more effective penultimate step braking strategy that decreases the braking demand during the final step of reactive cutting.
Collapse
Affiliation(s)
- Colin M.S. Mulligan
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis
| | - Samuel T. Johnson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis
| | - Christine D. Pollard
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis
| | - Kim S. Hannigan
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis
| | - Dimitrios Athanasiadis
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis
| | - Marc F. Norcross
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis
| |
Collapse
|
10
|
Thomas C, Dos'Santos T, Comfort P, Jones PA. Male and female soccer players exhibit different knee joint mechanics during pre-planned change of direction. Sports Biomech 2024; 23:118-131. [PMID: 33115317 DOI: 10.1080/14763141.2020.1830160] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 09/25/2020] [Indexed: 01/13/2023]
Abstract
Change of direction manoeuvres is important in soccer and associated with non-contact anterior cruciate ligament injury, yet it is not known how the mechanics differentiate between males and females during 180° turns. Twenty-eight soccer players (14 males and 14 females) performed 180° turns with ground reaction forces collected over penultimate and final contacts. A two-way (contact × limb) multivariate analysis of variance (MANOVA) were run to examine differences between contact (penultimate and final) or limb (dominant and non-dominant) for sagittal plane hip, knee and ankle peak angles and moments, and frontal plane knee abduction moments and angles between sexes. Average horizontal GRF was increased on the dominant limb, compared to non-dominant and for the final contact compared to the penultimate contact. Knee abduction angles were increased in females compared to males, while the opposite was true for knee abduction moments. Statistically significant differences were evident, with increases in peak vertical GRF, peak hip flexion angle, peak knee flexion angle, peak knee extensor moment, and peak ankle dorsiflexion angle observed in the penultimate contact compared to final contact. The results indicate the penultimate contact during turns helps reduce loading on the final contact, yet male and female soccer players exhibit different knee joint mechanics during pre-planned change of direction.
Collapse
Affiliation(s)
- Christopher Thomas
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, Greater Manchester, UK
| | - Thomas Dos'Santos
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, Greater Manchester, UK
| | - Paul Comfort
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, Greater Manchester, UK
| | - Paul A Jones
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, Greater Manchester, UK
| |
Collapse
|
11
|
Harper DJ, McBurnie AJ, Santos TD, Eriksrud O, Evans M, Cohen DD, Rhodes D, Carling C, Kiely J. Biomechanical and Neuromuscular Performance Requirements of Horizontal Deceleration: A Review with Implications for Random Intermittent Multi-Directional Sports. Sports Med 2022; 52:2321-2354. [PMID: 35643876 PMCID: PMC9474351 DOI: 10.1007/s40279-022-01693-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Rapid horizontal accelerations and decelerations are crucial events enabling the changes of velocity and direction integral to sports involving random intermittent multi-directional movements. However, relative to horizontal acceleration, there have been considerably fewer scientific investigations into the biomechanical and neuromuscular demands of horizontal deceleration and the qualities underpinning horizontal deceleration performance. Accordingly, the aims of this review article are to: (1) conduct an evidence-based review of the biomechanical demands of horizontal deceleration and (2) identify biomechanical and neuromuscular performance determinants of horizontal deceleration, with the aim of outlining relevant performance implications for random intermittent multi-directional sports. We highlight that horizontal decelerations have a unique ground reaction force profile, characterised by high-impact peak forces and loading rates. The highest magnitude of these forces occurs during the early stance phase (< 50 ms) and is shown to be up to 2.7 times greater than those seen during the first steps of a maximal horizontal acceleration. As such, inability for either limb to tolerate these forces may result in a diminished ability to brake, subsequently reducing deceleration capacity, and increasing vulnerability to excessive forces that could heighten injury risk and severity of muscle damage. Two factors are highlighted as especially important for enhancing horizontal deceleration ability: (1) braking force control and (2) braking force attenuation. Whilst various eccentric strength qualities have been reported to be important for achieving these purposes, the potential importance of concentric, isometric and reactive strength, in addition to an enhanced technical ability to apply braking force is also highlighted. Last, the review provides recommended research directions to enhance future understanding of horizontal deceleration ability.
Collapse
Affiliation(s)
- Damian J. Harper
- Institute of Coaching and Performance, School of Sport and Health Sciences, University of Central Lancashire, Fylde Road, Preston, PR1 2HE UK
| | - Alistair J. McBurnie
- Department of Football Medicine and Science, Manchester United Football Club, AON Training Complex, Manchester, UK
| | - Thomas Dos’ Santos
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Ola Eriksrud
- Biomechanics Laboratory, Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Martin Evans
- The FA Group, St George’s Park, Burton-Upon-Trent, Staffordshire, UK
| | - Daniel D. Cohen
- Faculty of Health Sciences, Masira Research Institute, University of Santander, Bucaramanga, Colombia
- Sports Science Centre (CCD), Colombian Ministry of Sport (Mindeporte), Bogotá, Distrito Capital Colombia
| | - David Rhodes
- Institute of Coaching and Performance, School of Sport and Health Sciences, University of Central Lancashire, Fylde Road, Preston, PR1 2HE UK
| | - Christopher Carling
- Present Address: FFF Research Centre, French Football Federation, Clairefontaine National Football Centre, Clairefontaine-en-Yvelines, France
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - John Kiely
- Physical Education and Sports Science Department, University of Limerick, Limerick, Ireland
| |
Collapse
|
12
|
Miles JJ, McGuigan PM, King E, Daniels KAJ. Biomechanical asymmetries differ between autograft types during unplanned change of direction after ACL reconstruction. Scand J Med Sci Sports 2022; 32:1236-1248. [PMID: 35419809 DOI: 10.1111/sms.14166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022]
Abstract
Nine months after anterior cruciate ligament (ACL) reconstruction, athletes who undergo surgery using a bone-patellar-tendon-bone (BPTB) autograft demonstrate higher loading asymmetries during vertical jumping than those with a hamstring tendon (HT) autograft. These asymmetries may transfer into sporting movements with a greater ACL injury risk. The aim of this study was to compare between-limb asymmetries in knee mechanics and task performance during an unplanned 90° change-of-direction (CoD) task in male field sport athletes reconstructed with BPTB or HT autografts. Seventy-eight male multidirectional field sport athletes with either a BPTB (n = 39) or HT (n = 39) autograft completed maximal unplanned CoD trials in a three-dimensional motion capture laboratory at approximately 9 months post-surgery. A mixed-model 2x2 ANOVA (autograft type x limb) was used to compare variables related to ACL injury risk (e.g., internal knee moments) and performance (e.g., completion time) between autografts and limbs. Statistical parametric mapping was used for a waveform comparison throughout stance, supplemented with a discrete point analyses of peak knee moments and performance variables. Interaction effects were found at the knee joint, with BPTB demonstrating greater asymmetries than HT in knee extension moment (p < 0.001); resultant ground reaction force (p < 0.001); peak knee external rotation moment (p = 0.04); and knee adduction (p = 0.05), medial rotation (p < 0.001), and flexion (p < 0.001) angles. No differences were found between autografts for any performance variable. BPTB demonstrated greater lower-limb biomechanical asymmetries than HT during CoD, which may influence knee loading and longer-term outcomes and should thus be targeted during rehabilitation prior to return to play.
Collapse
Affiliation(s)
- Joshua J Miles
- Sports Medicine Research Department, Sports Surgery Clinic, Dublin, Ireland.,Department for Health, University of Bath, Bath, UK
| | | | - Enda King
- Sports Medicine Research Department, Sports Surgery Clinic, Dublin, Ireland
| | - Katherine A J Daniels
- Sports Medicine Research Department, Sports Surgery Clinic, Dublin, Ireland.,Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
13
|
McBurnie AJ, Parr J, Kelly DM, Dos'Santos T. Multidirectional Speed in Youth Soccer Players: Programming Considerations and Practical Applications. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Aparicio-Sarmiento A, Hernández-García R, Cejudo A, Palao JM, Sainz de Baranda P. Reliability of a Qualitative Instrument to Assess High-Risk Mechanisms during a 90° Change of Direction in Female Football Players. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074143. [PMID: 35409830 PMCID: PMC8999027 DOI: 10.3390/ijerph19074143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022]
Abstract
Sidestep cuts between 60° and 180° and one-leg landings have been identified as the main mechanisms of ACL injuries in several sports. This study sought to determine intra- and inter-rater reliability of a qualitative tool to assess high-risk movements in a 90° change of direction when the test is applied in a real framework of sport practice. Female footballers from two teams (n = 38) participated in this study and were asked to perform 90° cutting trials to each side, which were simultaneously filmed from a frontal and a sagittal view. A total of 61 cases were selected for 2D qualitative observational analysis by three raters. Poor reliability was found among each pair of raters as well as moderate reliability when the Cutting Movement Assessment Score (CMAS) was given by the same rater at different moments, but with too high a minimum detectable change. On the other hand, raters presented a significant, as well as moderate-to-good intra-rater reliability for most items of the CMAS tool. There was, however, non-significant reliability between observers in rating most check-points of the tool. For these reasons, more objective guidelines and clearer definitions for each criterion within the CMAS, as well as a longer, standardised training period for novel observers, would be highly recommended to improve the reliability of this tool in an applied context with female footballers.
Collapse
Affiliation(s)
- Alba Aparicio-Sarmiento
- Research Group “Raquis: Aparato Locomotor y Deporte”, Department of Physical Activity and Sport, Faculty of Sport Sciences, Campus de Excelencia Internacional Mare Nostrum, University of Murcia, 30720 Murcia, Spain; (R.H.-G.); (P.S.d.B.)
- Correspondence: (A.A.-S.); (A.C.); Tel.: +34-868-8886-71 (A.A.-S.); +34-868-8884-30 (A.C.)
| | - Raquel Hernández-García
- Research Group “Raquis: Aparato Locomotor y Deporte”, Department of Physical Activity and Sport, Faculty of Sport Sciences, Campus de Excelencia Internacional Mare Nostrum, University of Murcia, 30720 Murcia, Spain; (R.H.-G.); (P.S.d.B.)
| | - Antonio Cejudo
- Research Group “Raquis: Aparato Locomotor y Deporte”, Department of Physical Activity and Sport, Faculty of Sport Sciences, Campus de Excelencia Internacional Mare Nostrum, University of Murcia, 30720 Murcia, Spain; (R.H.-G.); (P.S.d.B.)
- Correspondence: (A.A.-S.); (A.C.); Tel.: +34-868-8886-71 (A.A.-S.); +34-868-8884-30 (A.C.)
| | - José Manuel Palao
- Scientific Association of Research Groups “Sport Performance Analysis Association”, 30720 Murcia, Spain;
- Department of Health, Exercise Science & Sport Management, University of Wisconsin-Parkside, Kenosha, WI 53144, USA
| | - Pilar Sainz de Baranda
- Research Group “Raquis: Aparato Locomotor y Deporte”, Department of Physical Activity and Sport, Faculty of Sport Sciences, Campus de Excelencia Internacional Mare Nostrum, University of Murcia, 30720 Murcia, Spain; (R.H.-G.); (P.S.d.B.)
| |
Collapse
|
15
|
Fares MY, Stewart K, McBride M, Maclean J. Lower limb injuries in an english professional football club: injury analysis and recommendations for prevention. PHYSICIAN SPORTSMED 2022; 51:260-268. [PMID: 35191360 DOI: 10.1080/00913847.2022.2045176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Lower limb injuries constitute a problem in the sport of football. Our aim is to explore patterns and trends of lower limb injuries in an English professional football club. METHODS This is a descriptive epidemiological study. Reports provided by the club's physical therapy team were screened for injuries among professional football players sustained over four seasons, from 2015/2016 to 2018/2019. Data included setting of injury (in-match or training), anatomical location of injury, type of injury, number of days off and month of injury. RESULTS A total of 296 lower limb injuries were recorded in our study, with a rate of 11.14 per 1000 football hours. Injury rate during games was 51.38 per 1000 football hours, significantly greater than that during training at 3.81 per 1000 football hours (p = 0.021). The thigh was significantly the most commonly injured location at 4.67 per 1000 football hours (p < 0.001). Grade I tears were the most common injury type at 1.73 per 1000 football hours, significantly greater than grade III tears (p = 0.027), contusions (p = 0.043), fractures (p = 0.02), and lacerations (p = 0.019). Injury rates were found to be greatest during preseason and declined as season progressed. On average, an injury sidelined the affected footballer for a total of 20 days. CONCLUSION Lower limb injuries were more common during matches than training. The thigh is the most common injury location, and grade I muscle tear was the most common type of injury. Injury rates were higher early on in the season. Potential prevention strategies include spacing out competition, adopting training and exercise regimens that cater for recovery, and increasing research regarding injury mechanisms.
Collapse
Affiliation(s)
- Mohamad Y Fares
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Katy Stewart
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.,Hampden Sports Clinic, Glasgow, Scotland, UK
| | | | - John Maclean
- College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.,Hampden Sports Clinic, Glasgow, Scotland, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
16
|
Deceleration Training in Team Sports: Another Potential 'Vaccine' for Sports-Related Injury? Sports Med 2021; 52:1-12. [PMID: 34716561 PMCID: PMC8761154 DOI: 10.1007/s40279-021-01583-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/15/2022]
Abstract
High-intensity horizontal decelerations occur frequently in team sports and are typically performed to facilitate a reduction in momentum preceding a change of direction manoeuvre or following a sprinting action. The mechanical underpinnings of horizontal deceleration are unique compared to other high-intensity locomotive patterns (e.g., acceleration, maximal sprinting speed), and are characterised by a ground reaction force profile of high impact peaks and loading rates. The high mechanical loading conditions observed when performing rapid horizontal decelerations can lead to tissue damage and neuromuscular fatigue, which may diminish co-ordinative proficiency and an individual’s ability to skilfully dissipate braking loads. Furthermore, repetitive long-term deceleration loading cycles if not managed appropriately may propagate damage accumulation and offer an explanation for chronic aetiological consequences of the ‘mechanical fatigue failure’ phenomenon. Training strategies should look to enhance an athlete’s ability to skilfully dissipate braking loads, develop mechanically robust musculoskeletal structures, and ensure frequent high-intensity horizontal deceleration exposure in order to accustom individuals to the potentially damaging effects of intense decelerations that athletes will frequently perform in competition. Given the apparent importance of horizontal decelerations, in this Current Opinion article we provide considerations for sport science and medicine practitioners around the assessment, training and monitoring of horizontal deceleration. We feel these considerations could lead to new developments in injury-mitigation and physical development strategies in team sports.
Collapse
|
17
|
Ogasawara I, Shimokochi Y, Konda S, Mae T, Nakata K. Effect of Rearfoot Strikes on the Hip and Knee Rotational Kinetic Chain During the Early Phase of Cutting in Female Athletes. SPORTS MEDICINE - OPEN 2021; 7:75. [PMID: 34674077 PMCID: PMC8531138 DOI: 10.1186/s40798-021-00368-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Biomechanical factors affecting horizontal-plane hip and knee kinetic chain and anterior cruciate ligament (ACL) injury risk during cutting maneuvers remain unclear. This study aimed to examine whether different foot strike patterns alter horizontal-plane hip and knee kinetics and kinematics during a cutting maneuver in female athletes and clarify the individual force contribution for producing high-risk hip and knee loadings. Twenty-five healthy female athletes performed a 60° cutting task with forefoot and rearfoot first strike conditions. Horizontal-plane hip and knee moment components, angles, and angular velocities were calculated using synchronized data of the marker positions on the body landmarks and ground reaction forces (GRFs) during the task. The one-dimensional statistical parametric mapping paired t test was used to identify the significant difference in kinetic and kinematic time-series data between foot strike conditions. RESULTS In the rearfoot strike condition, large hip and knee internal rotation loadings were produced during the first 5% of stance due to the application of GRFs, causing a significantly larger hip internal rotation excursion than that of the forefoot strike condition. Dissimilarly, neither initial hip internal rotation displacement nor knee internal rotation GRF loadings were observed in the forefoot strike condition. CONCLUSIONS Rearfoot strike during cutting appears to increase noncontact ACL injury risk as the GRF tends to produce combined hip and knee internal rotation moments and the high-risk lower limb configuration. Conversely, forefoot strike during cutting appears to be an ACL-protective strategy that does not tend to produce the ACL-harmful joint loadings and lower extremity configurations. Thus, improving foot strike patterns during cutting should be incorporated in ACL injury prevention programs.
Collapse
Affiliation(s)
- Issei Ogasawara
- Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University, 1-17 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
- Department of Sports Medical Biomechanics, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Yohei Shimokochi
- Department of Health and Sport Management, Osaka University of Health and Sport Sciences, 1-1 Asashirodai, Kumatori-cho, Sennan-gun, Osaka, 590-0496, Japan
| | - Shoji Konda
- Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University, 1-17 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Department of Sports Medical Biomechanics, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Tatsuo Mae
- Department of Health and Sport Management, Osaka University of Health and Sport Sciences, 1-1 Asashirodai, Kumatori-cho, Sennan-gun, Osaka, 590-0496, Japan
| | - Ken Nakata
- Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University, 1-17 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
18
|
Zago M, David S, Bertozzi F, Brunetti C, Gatti A, Salaorni F, Tarabini M, Galvani C, Sforza C, Galli M. Fatigue Induced by Repeated Changes of Direction in Élite Female Football (Soccer) Players: Impact on Lower Limb Biomechanics and Implications for ACL Injury Prevention. Front Bioeng Biotechnol 2021; 9:666841. [PMID: 34291039 PMCID: PMC8287513 DOI: 10.3389/fbioe.2021.666841] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background The etiology of Anterior Cruciate Ligament (ACL) injury in women football results from the interaction of several extrinsic and intrinsic risk factors. Extrinsic factors change dynamically, also due to fatigue. However, existing biomechanical findings concerning the impact of fatigue on the risk of ACL injuries remains inconsistent. We hypothesized that fatigue induced by acute workload in short and intense game periods, might in either of two ways: by pushing lower limbs mechanics toward a pattern close to injury mechanism, or alternatively by inducing opposed protective compensatory adjustments. Aim In this study, we aimed at assessing the extent to which fatigue impact on joints kinematics and kinetics while performing repeated changes of direction (CoDs) in the light of the ACL risk factors. Methods This was an observational, cross-sectional associative study. Twenty female players (age: 20-31 years, 1st-2nd Italian division) performed a continuous shuttle run test (5-m) involving repeated 180°-CoDs until exhaustion. During the whole test, 3D kinematics and ground reaction forces were used to compute lower limb joints angles and internal moments. Measures of exercise internal load were: peak post-exercise blood lactate concentration, heart rate (HR) and perceived exertion. Continuous linear correlations between kinematics/kinetics waveforms (during the ground contact phase of the pivoting limb) and the number of consecutive CoD were computed during the exercise using a Statistical Parametric Mapping (SPM) approach. Results The test lasted 153 ± 72 s, with a rate of 14 ± 2 CoDs/min. Participants reached 95% of maximum HR and a peak lactate concentration of 11.2 ± 2.8 mmol/L. Exercise duration was inversely related to lactate concentration (r = -0.517, p < 0.01), while neither%HR max nor [La-] b nor RPE were correlated with test duration before exhaustion (p > 0.05). Alterations in lower limb kinematics were found in 100%, and in lower limb kinetics in 85% of the players. The most common kinematic pattern was a concurrent progressive reduction in hip and knee flexion angle at initial contact (10 players); 5 of them also showed a significantly more adducted hip. Knee extension moment decreased in 8, knee valgus moment increased in 5 players. A subset of participants showed a drift of pivoting limb kinematics that matches the known ACL injury mechanism; other players displayed less definite or even opposed behaviors. Discussion Players exhibited different strategies to cope with repeated CoDs, ranging from protective to potentially dangerous behaviors. While the latter was not a univocal effect, it reinforces the importance of individual biomechanical assessment when coping with fatigue.
Collapse
Affiliation(s)
- Matteo Zago
- Dipartimento di Meccanica, Politecnico di Milano, Milan, Italy.,E4Sport Laboratory, Politecnico di Milano, Lecco, Italy
| | - Sina David
- Department of Human Movement Sciences, VU University Amsterdam, Amsterdam, Netherlands
| | - Filippo Bertozzi
- Dipartimento di Scienze Biomediche per la Salute, Politecnico di Milano, Milan, Italy
| | - Claudia Brunetti
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Alice Gatti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Francesca Salaorni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Marco Tarabini
- Dipartimento di Meccanica, Politecnico di Milano, Milan, Italy.,E4Sport Laboratory, Politecnico di Milano, Lecco, Italy
| | - Christel Galvani
- Dipartimento di Psicologia, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Chiarella Sforza
- Dipartimento di Scienze Biomediche per la Salute, Politecnico di Milano, Milan, Italy
| | - Manuela Galli
- E4Sport Laboratory, Politecnico di Milano, Lecco, Italy.,Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| |
Collapse
|
19
|
|
20
|
Yoshida N, Kunugi S, Konno T, Masunari A, Nishida S, Koumura T, Kobayashi N, Miyakawa S. Differences in Muscle Activities and Kinematics between Forefoot Strike and Rearfoot Strike in the Lower Limb during 180° Turns. Int J Sports Phys Ther 2021; 16:715-723. [PMID: 34123524 PMCID: PMC8168997 DOI: 10.26603/001c.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/26/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A forefoot strike (FFS) could be a safer landing technique than a rearfoot strike (RFS) during a cutting motion to prevent anterior cruciate ligament (ACL) injury. PURPOSE This study aimed to determine the joint angles, ground reaction force (GRF), and muscle activity levels associated with FFS and RFS landings during 180° turns. STUDY DESIGN Cross-sectional study. METHODS Fourteen male soccer players from the University of Tsukuba football (soccer) club participated in this study. The FFS consisted of initial contact with the toes on the force plates followed by the rearfoot; meanwhile, the initial contact was performed with the heels on the force plates followed by the forefoot for the RFS. Ankle, knee, and hip joint angles were recorded using a three-dimensional motion capture system. GRFs were measured using a force plate. Gluteus medius (GM), rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), semitendinosus (ST), biceps femoris (BF), tibialis anterior (TA), and lateral gastrocnemius (GL) activities were measured by electromyography. RESULTS The activities of GM, GL, and ST from initial contact to early periods during landing into the ground with the FFS are larger than those with RFS. In addition, the results showed significant differences in lower-limb angles and GRFs between the FFS and RFS. CONCLUSION These results suggest that there might be differences in ACL injury risk during a 180° turn between the FFS and the RFS pattern. An investigation into the grounding method that prevents injury is necessary in future studies. LEVELS OF EVIDENCE Level 3b.
Collapse
|
21
|
Merks BM, Frencken WG, Den Otter A, Brink MS. Quantifying change of direction load using positional data from small-sided games in soccer. SCI MED FOOTBALL 2021; 6:234-240. [DOI: 10.1080/24733938.2021.1912382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Brenda M.T. Merks
- Center for Human Movement Sciences, University Medical Center, University of Groningen, Groningen, Netherlands
| | - Wouter G.P. Frencken
- Center for Human Movement Sciences, University Medical Center, University of Groningen, Groningen, Netherlands
- Football Club Groningen, Groningen, Netherlands
| | - A.R. Den Otter
- Center for Human Movement Sciences, University Medical Center, University of Groningen, Groningen, Netherlands
| | - Michel S. Brink
- Center for Human Movement Sciences, University Medical Center, University of Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Dos'Santos T, Thomas C, McBurnie A, Comfort P, Jones PA. Biomechanical Determinants of Performance and Injury Risk During Cutting: A Performance-Injury Conflict? Sports Med 2021; 51:1983-1998. [PMID: 33811615 PMCID: PMC8363537 DOI: 10.1007/s40279-021-01448-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Most cutting biomechanical studies investigate performance and knee joint load determinants independently. This is surprising because cutting is an important action linked to performance and non-contact anterior cruciate ligament (ACL) injuries. The aim of this study was to investigate the relationship between cutting biomechanics and cutting performance (completion time, ground contact time [GCT], exit velocity) and surrogates of non-contact ACL injury risk (knee abduction [KAM] and internal rotation [KIRM] moments) during 90° cutting. DESIGN Mixed, cross-sectional study following an associative design. 61 males from multidirectional sports performed six 90° pre-planned cutting trials, whereby lower-limb and trunk kinetics and kinematics were evaluated using three-dimensional (3D) motion and ground reaction force analysis over the penultimate (PFC) and final foot contact (FFC). Pearson's and Spearman's correlations were used to explore the relationships between biomechanical variables and cutting performance and injury risk variables. Stepwise regression analysis was also performed. RESULTS Faster cutting performance was associated (p ≤ 0.05) with greater centre of mass (COM) velocities at key instances of the cut (r or ρ = 0.533-0.752), greater peak and mean propulsive forces (r or ρ = 0.449-0.651), shorter FFC GCTs (r or ρ = 0.569-0.581), greater FFC and PFC braking forces (r = 0.430-0.551), smaller hip and knee flexion range of motion (r or ρ = 0.406-0.670), greater knee flexion moments (KFMs) (r = 0.482), and greater internal foot progression angles (r = - 0.411). Stepwise multiple regression analysis revealed that exit velocity, peak resultant propulsive force, PFC mean horizontal braking force, and initial foot progression angle together could explain 64% (r = 0.801, adjusted 61.6%, p = 0.048) of the variation in completion time. Greater peak KAMs were associated with greater COM velocities at key instances of the cut (r or ρ = - 0.491 to - 0.551), greater peak knee abduction angles (KAA) (r = - 0.468), and greater FFC braking forces (r = 0.434-0.497). Incidentally, faster completion times were associated with greater peak KAMs (r = - 0.412) and KIRMs (r = 0.539). Stepwise multiple regression analysis revealed that FFC mean vertical braking force and peak KAA together could explain 43% (r = 0.652, adjusted 40.6%, p < 0.001) of the variation peak KAM. CONCLUSION Techniques and mechanics associated with faster cutting (i.e. faster COM velocities, greater FFC braking forces in short GCTs, greater KFMs, smaller hip and knee flexion, and greater internal foot progression angles) are in direct conflict with safer cutting mechanics (i.e. reduced knee joint loading, thus ACL injury risk), and support the "performance-injury conflict" concept during cutting. Practitioners should be conscious of this conflict when instructing cutting techniques to optimise performance while minimising knee joint loading, and should, therefore, ensure that their athletes have the physical capacity (i.e. neuromuscular control, co-contraction, and rapid force production) to tolerate and support the knee joint loading during cutting.
Collapse
Affiliation(s)
- Thomas Dos'Santos
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, All Saints Building, Manchester Campus John Dalton Building, Manchester Campus, Manchester, M15 6BH, UK. .,Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, UK.
| | - Christopher Thomas
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, UK
| | | | - Paul Comfort
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, UK
| | - Paul A Jones
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Salford, Greater Manchester, UK
| |
Collapse
|
23
|
Dos’Santos T, Thomas C, Jones PA. How early should you brake during a 180° turn? A kinetic comparison of the antepenultimate, penultimate, and final foot contacts during a 505 change of direction speed test. J Sports Sci 2020; 39:395-405. [DOI: 10.1080/02640414.2020.1823130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Thomas Dos’Santos
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Christopher Thomas
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
| | - Paul A. Jones
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
| |
Collapse
|
24
|
Falch HN, Rædergård HG, van den Tillaar R. Effect of Approach Distance and Change of Direction Angles Upon Step and Joint Kinematics, Peak Muscle Activation, and Change of Direction Performance. Front Sports Act Living 2020; 2:594567. [PMID: 33345172 PMCID: PMC7739774 DOI: 10.3389/fspor.2020.594567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
The aim of the study was to compare the step kinematics, joint angles, and muscle activations between change of direction (COD) maneuvers with different angles and approach distances, suggested to require different strength and velocity demands. Twenty-three male soccer players completed eight COD tests consisting of both 4 and 20-m sprint approaches with one directional change which varied between each COD test (45, 90, 135, and 180°). Peak muscle activity, step and joint kinematics of the lower limbs of the plant, and re-acceleration step were measured. Compared to 4-m CODs, the 20-m COD approach distances increased vertical center of mass displacement (p < 0.001), number of deceleration steps (p < 0.001), revealing no statistical differences upon joint angles (p > 0.05). Greater COD angles resulted in increased ankle dorsiflexion, hip abduction and flexion, greater displacement of the center of mass and tibia angle, longer contact times, and more deceleration steps (p < 0.034). The CODs categorized as velocity-dominant revealed higher peak muscle activity in the adductor longus, semitendinosus, biceps femoris, and gastrocnemius. It was concluded that velocity-dominant CODs revealed higher muscle activity due to a higher eccentric loading, implicating task-specific training considerations for enhancing COD performance.
Collapse
|
25
|
Donelon TA, Dos'Santos T, Pitchers G, Brown M, Jones PA. Biomechanical Determinants of Knee Joint Loads Associated with Increased Anterior Cruciate Ligament Loading During Cutting: A Systematic Review and Technical Framework. SPORTS MEDICINE-OPEN 2020; 6:53. [PMID: 33136207 PMCID: PMC7606399 DOI: 10.1186/s40798-020-00276-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/02/2020] [Indexed: 01/13/2023]
Abstract
Background Cutting actions are associated with non-contact ACL injuries in multidirectional sports due to the propensity to generate large multiplanar knee joint loads (KJLs) that have the capacity to increase ACL loading and strain. Numerous studies have investigated the biomechanical determinants of KJLs in cutting tasks. The aim of this systematic review was to comprehensively review the literature regarding biomechanical determinants of KJLs during cutting, in order to develop a cutting technical framework alongside training recommendations for practitioners regarding KJL mitigation. Methods Databases (SPORTDiscus, Web of Science and PubMed) were systematically searched using a combination of the following terms: “Biomechanical determinants”, or “Knee abduction moment”, or “Technical determinants”, or “Knee loading”, or “Knee loads”, or “Mechanical determinants”, or “ACL strain”, or “Knee adduction moment”, or “Anterior tibial shear”, or “Knee internal rotation moment”, or “Knee valgus moment” AND “Change of direction”, or “Cutting manoeuvre”, or “Run and cut”, or “Run-and-cut”, or “Sidestepping”, or “Side-stepping”, or “Shuttle run”. Inclusion criteria were as follows: studies examining a cutting task < 110° with a preceding approach run that examined biomechanical determinants of KJLs using three-dimensional motion analysis. Results The search returned 6404 possibly eligible articles, and 6 identified through other sources. Following duplicate removal, 4421 titles and abstracts were screened, leaving 246 full texts to be screened for inclusion. Twenty-three full texts were deemed eligible for inclusion and identified numerous determinants of KJLs; 11 trunk, 11 hip, 7 knee, 3 multiplanar KJLs, 5 foot/ankle and 7 identifying ground reaction forces (GRFs) as determinants of KJLs. Conclusion Using the framework developed from the results, cutting KJLs can be mitigated through the following: reducing lateral foot-plant distances, thus lowering hip abduction and orientating the foot closer to neutral with a mid-foot or forefoot placement strategy; minimising knee valgus and hip internal rotation angles and motion at initial contact (IC) and weight acceptance (WA); avoiding and limiting lateral trunk flexion and attempt to maintain an upright trunk position or trunk lean into the intended direction; and finally, reducing GRF magnitude during WA, potentially by attenuation through increased knee flexion and emphasising a greater proportion of braking during the penultimate foot contact (PFC).
Collapse
Affiliation(s)
- Thomas A Donelon
- Room Af87, Section of Sport and Exercise Sciences, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK.
| | - Thomas Dos'Santos
- Department of Sport and Exercise Science, Manchester Metropolitan University, Bonsall Street, Manchester, M15 6GX, UK
| | - Guy Pitchers
- Room Af87, Section of Sport and Exercise Sciences, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK
| | - Mathew Brown
- Room Af87, Section of Sport and Exercise Sciences, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, Kent, CT1 1QU, UK
| | - Paul A Jones
- School of Health Sciences, University of Salford, C702 Allerton Building, Salford, M6 6PU, UK
| |
Collapse
|
26
|
Dos'Santos T, McBurnie A, Thomas C, Comfort P, Jones PA. Biomechanical Determinants of the Modified and Traditional 505 Change of Direction Speed Test. J Strength Cond Res 2020; 34:1285-1296. [PMID: 31868815 DOI: 10.1519/jsc.0000000000003439] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dos'Santos, T, McBurnie, A, Thomas, C, Comfort, P, and Jones, PA. Biomechanical determinants of the modified and traditional 505 change of direction speed test. J Strength Cond Res 34(5): 1285-1296, 2020-The aim of this study was to investigate the whole-body biomechanical determinants of 180° change of direction (COD) performance. Sixty-one male athletes (age: 20.7 ± 3.8 years, height: 1.77 ± 0.06 m, mass: 74.7 ± 10.0 kg) from multiple sports (soccer, rugby, and cricket) completed 6 trials of the modified and traditional 505 on their right leg, whereby 3D motion and ground reaction force data were collected during the COD. Pearson's and Spearman's correlations were used to explore the relationships between biomechanical variables and COD completion time. Independent t-tests and Hedges' g effect sizes were conducted between faster (top 20) and slower (bottom 20) performers to explore differences in biomechanical variables. Key kinetic and kinematic differences were demonstrated between faster and slower performers with statistically significant (p ≤ 0.05) and meaningful differences (g = 0.56-2.70) observed. Faster COD performers displayed greater peak and mean horizontal propulsive forces (PF) in shorter ground contact times, more horizontally orientated peak resultant braking and PFs, greater horizontal to vertical mean and peak braking and PF ratios, greater approach velocities, and displayed greater reductions in velocity over key instances of the COD. In addition, faster performers displayed greater penultimate foot contact (PFC) hip, knee, and ankle dorsi-flexion angles, greater medial trunk lean, and greater internal pelvic and foot rotation. These aforementioned variables were also moderately to very largely (r or ρ = 0.317-0.795, p ≤ 0.013) associated with faster COD performance. Consequently, practitioners should focus not only on developing their athletes' ability to express force rapidly, but also develop their technical ability to apply force horizontally. In addition, practitioners should consider coaching a 180° turning strategy that emphasizes high PFC triple flexion for center of mass lowering while also encouraging whole-body rotation to effectively align the body toward the exit for faster performance.
Collapse
Affiliation(s)
- Thomas Dos'Santos
- Human Performance Laboratory, Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Clarke R, Read PJ, De Ste Croix MBA, Hughes JD. The Deceleration Deficit: A Novel Field-Based Method to Quantify Deceleration During Change of Direction Performance. J Strength Cond Res 2020; 36:2434-2439. [PMID: 33044369 DOI: 10.1519/jsc.0000000000003856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clarke, R, Read, PJ, De Ste Croix, MBA, and Hughes, JD. The deceleration deficit: a novel field-based method to quantify deceleration during change of direction performance. J Strength Cond Res XX(X): 000-000, 2020-The study investigated the relationship between linear and change of direction (COD) speed performance components and the individual differences between deceleration deficit (DD) and COD deficit (CODD). Thirty-six subjects (mean ± SD: age = 20.3 ± 2.9 years; stature = 175.2 ± 7.7 cm; and body mass = 78.0 ± 16.7 kg) completed 3 trials of a 505 test in both turning directions (dominant [D]; nondominant [ND]) and 3 15-m linear sprints. Deceleration deficit was calculated by the 15-m approach in the 505 test, minus the athlete's linear 15-m sprint time. To compare individuals CODD and DD, z-scores were calculated, and moderate worthwhile changes (MWCs) were identified between these deficit z-scores. Significant correlations were identified between linear sprints and 505 time (D: r = 0.71, 0.74; P < 0.01. ND: r = 0.76, 0.75; P < 0.01) for 10-m and 15-m sprint. respectively, and between 505 performance and CODD (D: r = 0.74; P < 0.01. ND: r = 0.77; P < 0.01) and DD (D: r = 0.41, P < 0.05. ND: r = 0.44, P < 0.01). Deceleration deficit was significantly related to CODD (D: r = 0.59; P < 0.01. ND: r = 0.62; P < 0.01); however, 78% of subjects demonstrated differences between these deficit measures greater than an MWC. In conclusion, linear speed has the strongest significant relationship with 505 performance. Deceleration deficit could provide a more isolated construct than CODD which may be related to an athlete's deceleration capabilities.
Collapse
Affiliation(s)
- Richard Clarke
- The University of Gloucestershire, Exercise & Sport Research Centre, Cheltenham, England.,Birmingham City University, Birmingham, England
| | - Paul J Read
- The University of Gloucestershire, Exercise & Sport Research Centre, Cheltenham, England.,Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Mark B A De Ste Croix
- The University of Gloucestershire, Exercise & Sport Research Centre, Cheltenham, England
| | - Jonathan D Hughes
- The University of Gloucestershire, Exercise & Sport Research Centre, Cheltenham, England
| |
Collapse
|
28
|
Dos'Santos T, Thomas C, Comfort P, Jones PA. The Effect of Training Interventions on Change of Direction Biomechanics Associated with Increased Anterior Cruciate Ligament Loading: A Scoping Review. Sports Med 2020; 49:1837-1859. [PMID: 31493206 PMCID: PMC6851221 DOI: 10.1007/s40279-019-01171-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Change of direction (COD) manoeuvres are associated with anterior cruciate ligament (ACL) injury risk due to the propensity to generate large multiplanar knee joint loads. Given the short- and long-term consequences of ACL injury, practitioners are interested in methods that reduce knee joint loads and subsequent ACL loading. An effective strategy to reduce ACL loading is modifying an athlete’s movement mechanics to reduce knee joint loading. The purpose of this scoping review was to critically appraise and comprehensively synthesise the existing literature related to the effects of training interventions on COD biomechanics associated with increased knee joint loads and subsequent ACL loading, and identify gaps and recommend areas for future research. A review of the literature was conducted using Medline and Sport DISCUS databases. Inclusion criteria consisted of pre-post analysis of a COD task, a minimum 4-week training intervention, and assessments of biomechanical characteristics associated with increased ACL loading. Of the 1,027 articles identified, 22 were included in the scoping review. Based on current literature, balance training and COD technique modification are the most effective training modalities for reducing knee joint loading (small to moderate effect sizes). One study reported dynamic core stability training was effective in reducing knee joint loads, but further research is needed to definitively confirm the efficacy of this method. Perturbation-enhanced plyometric training, the F-MARC 11 + soccer specific warm-up, Oslo Neuromuscular warm-up, and resistance training are ineffective training modalities to reduce COD knee joint loads. Conflicting findings have been observed for the Core-Pac and mixed training programme. Consequently, practitioners should consider incorporating balance and COD technique modification drills into their athletes’ training programmes to reduce potentially hazardous knee joint loads when changing direction. However, training intervention studies can be improved by investigating larger sample sizes (> 20), including a control group, acknowledging measurement error when interpreting their findings, and considering performance implications, to confirm the effectiveness of training interventions and improve adherence.
Collapse
Affiliation(s)
- Thomas Dos'Santos
- Human Performance Laboratory, University of Salford, Greater Manchester, UK.
| | - Christopher Thomas
- Human Performance Laboratory, University of Salford, Greater Manchester, UK
| | - Paul Comfort
- Human Performance Laboratory, University of Salford, Greater Manchester, UK
| | - Paul A Jones
- Human Performance Laboratory, University of Salford, Greater Manchester, UK
| |
Collapse
|
29
|
Li X, Li C, Cui Y, Wong DP. Acute kinematics and kinetics changes to wearable resistance during change of direction among soccer players. Res Sports Med 2020; 29:155-169. [PMID: 32491924 DOI: 10.1080/15438627.2020.1770761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study determined the acute changes in kinematics and kinetics when an additional load equivalent to 5% body mass was attached to the torso during change of direction (COD). In this within-subject repeated measures study, 14 male soccer players (age: 18.29 ± 0.32 years) volunteered to participate. Subjects performed COD under two conditions in randomized order: (1) no WR, and (2) with WR. No significant differences between the loaded and unloaded conditions in actual COD angle, approach speed, braking time, propulsive time, contact time, COD completion time (all p > 0.05, ES = 0.05-0.11), and all measured kinematic parameters (all p > 0.05, ES = 0-0.18). Nonetheless, ankle plantar/dorsi flexion ROM had possibly small increase in the loaded condition (ES = 0.24). Kinetics analysis has shown that the loaded condition was likely to have small increase in relative peak vertical propulsive ground reaction force (GRF, p = 0.11, ES = 0.41), and possible small increases in relative peak braking GRF (vertical: p = 0.21, ES = 0.42; total: p = 0.22, ES = 0.38), relative peak total propulsive GRF (p = 0.24, ES = 0.26), and relative braking impulse (horizontal, vertical, and total; p = 0.27-0.41, ES = 0.26-0.28). WR did not significantly change the acute movement techniques, meanwhile induced small increases in important kinetic stimuli for potential adaptation in COD.
Collapse
Affiliation(s)
- Xueliang Li
- China Football College, Beijing Sport University , Beijing, China
| | - Chunman Li
- China Football College, Beijing Sport University , Beijing, China
| | - Yixiong Cui
- AI Sports Engineering Lab, School of Sports Engineering, Beijing Sport University , Beijing, China
| | - Del P Wong
- Titi Sport Technology , Shenzhen, China.,School of Nursing & Health Studies, Open University of Hong Kong , Hong Kong, Hong Kong
| |
Collapse
|
30
|
Thomas C, Dos'Santos T, Comfort P, Jones PA. Effect of Asymmetry on Biomechanical Characteristics During 180° Change of Direction. J Strength Cond Res 2020; 34:1297-1306. [DOI: 10.1519/jsc.0000000000003553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Marques JB, Paul DJ, Graham-Smith P, Read PJ. Change of Direction Assessment Following Anterior Cruciate Ligament Reconstruction: A Review of Current Practice and Considerations to Enhance Practical Application. Sports Med 2020; 50:55-72. [PMID: 31531768 PMCID: PMC6942029 DOI: 10.1007/s40279-019-01189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Change of direction (CoD) has been indicated as a key mechanism in the occurrence of anterior cruciate ligament (ACL) injury during invasion sports. Despite these associations, assessments of knee function in athletic populations at the time of return to sport following ACL reconstruction (ACLr) have often focused on strength and single-leg hop tests, with a paucity of evidence to describe the CoD characteristics. Therefore, the aim of this narrative review was to describe the movement strategies exhibited following ACLr during CoD tasks and to critically analyze the range of tests that have been used. Specifically, we examined their ability to identify between-limb deficits and individuals who display a heightened risk of secondary injury and/or reductions in their level of pre-injury performance. MEDLINE, PubMed and SPORT Discuss databases were used and 13 articles were identified that met the inclusion criteria. Examination of the available literature indicates that current field-based practices are not representative of relevant sport demands and are unable to effectively assess knee function following ACLr. Laboratory-based studies have identified residual deficits and altered movement strategies at the time of return to sport, and this in part may be related to risk of re-injury. However, these assessments exhibit inherent limitations and are not practically viable for monitoring progress during rehabilitation. Consequently, alternative solutions that are more-aligned with the multitude of factors occurring during CoD maneuvers in chaotic sports environments are warranted to allow practitioners to 'bridge the gap' between the laboratory and the sports field/court. This approach may facilitate a more informed decision-making process with the end goal being, a heightened 'return to performance' and a lower risk of re-injury.
Collapse
Affiliation(s)
- Joao Beleboni Marques
- Aspetar, Orthopaedic and Sports Medicine Hospital, Sports City Street, Al Waab, Beverly Hills Garden 14, Villa 30, P.O. Box 29222, Doha, Qatar.
| | - Darren James Paul
- Aspetar, Orthopaedic and Sports Medicine Hospital, Sports City Street, Al Waab, Beverly Hills Garden 14, Villa 30, P.O. Box 29222, Doha, Qatar
| | | | - Paul James Read
- Aspetar, Orthopaedic and Sports Medicine Hospital, Sports City Street, Al Waab, Beverly Hills Garden 14, Villa 30, P.O. Box 29222, Doha, Qatar
| |
Collapse
|
32
|
Thomas C, Dos’santos T, Cuthbert M, Fields C, Jones PA. The effect of limb preference on braking strategy and knee joint mechanics during pivoting in female soccer players. SCI MED FOOTBALL 2019. [DOI: 10.1080/24733938.2019.1667020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Christopher Thomas
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, UK
| | - Thomas Dos’santos
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, UK
| | - Matthew Cuthbert
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, UK
| | - Cara Fields
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, UK
| | - Paul Anthony Jones
- Directorate of Sport, Exercise and Physiotherapy, University of Salford, Salford, UK
| |
Collapse
|
33
|
Ashton J, Jones PA. The Reliability of Using a Laser Device to Assess Deceleration Ability. Sports (Basel) 2019; 7:sports7080191. [PMID: 31404965 PMCID: PMC6722586 DOI: 10.3390/sports7080191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 11/25/2022] Open
Abstract
An important component of change of direction speed is the ability to decelerate. Objective methods to examine this quality have been rarely reported in the literature. The aim of this study was to investigate the within- and between-session reliability (intraclass correlation coefficients (ICC), coefficient of variation (CV), standard error of measurement (SEM) and smallest detectable difference (SDD)) of using a laser Doppler device (LAVEG—LAser VElocity Guard) to quantify deceleration ability in 20 amateur rugby union players. Each player performed one familiarisation and two experimental sessions (seven days apart) consisting of three maximal 15 m sprints from a standing start, with an immediate deceleration to a complete stop upon hearing an audible cue at the 15 m mark. Deceleration was evaluated by determining the distance required to decelerate to 75%, 50%, 25% and 0% (‘stopping distance’) of the velocity achieved at 15 m of the maximal sprint. Within-session relative reliability was moderate to good (ICC = 0.64–0.83) with borderline acceptable variation (CVs = 10.51%–16.71%) across all variables. Between-session reliability reported good to excellent relative reliability (ICC = 0.79–0.93) with acceptable absolute reliability, particularly for stopping distance (SEM: 6.54%; SDD: 9.11%). The assessment shows promise as a method to quantify deceleration ability in athletes.
Collapse
Affiliation(s)
- Jonty Ashton
- Department of Sport, Health and Exercise Sciences, University of Hull, Hull HU6 7RX, UK
| | - Paul A Jones
- School of Health & Society, Directorate of Psychology and Sport, University of Salford, Salford M6 6PU, UK.
| |
Collapse
|
34
|
Dos'Santos T, McBurnie A, Thomas C, Comfort P, Jones PA. Biomechanical Comparison of Cutting Techniques: A Review and Practical Applications. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000461] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
McBurnie AJ, DosʼSantos T, Jones PA. Biomechanical Associates of Performance and Knee Joint Loads During A 70-90° Cutting Maneuver in Subelite Soccer Players. J Strength Cond Res 2019; 35:3190-3198. [PMID: 31268990 DOI: 10.1519/jsc.0000000000003252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
McBurnie, AJ, Dos'Santos, T, Jones, PA. Biomechanical associates of performance and knee joint loads during a 70-90° cutting maneuver in subelite soccer players. J Strength Cond Res XX(X): 000-000, 2019-The aim of this study was to explore the "performance-injury risk" conflict during cutting, by examining whole-body joint kinematics and kinetics that are responsible for faster change-of-direction (COD) performance of a cutting task in soccer players, and to determine whether these factors relate to peak external multiplanar knee moments. 34 male soccer players (age: 20 ± 3.2 years; body mass: 73.5 ± 9.2 kg; height: 1.77 ± 0.06 m) were recruited to investigate the relationships between COD kinetics and kinematics with performance and multiplanar knee joint moments during cutting. Three-dimensional motion data using 10 Qualisys Oqus 7 infrared cameras (240 Hz) and ground reaction force data from 2 AMTI force platforms (1,200 Hz) were collected to analyze the penultimate foot contact and final foot contact (FFC). Pearson's or Spearman's correlations coefficients revealed performance time (PT), peak external knee abduction moment (KAM), and peak external knee rotation moment (KRM) were all significantly related (p < 0.05) to horizontal approach velocity (PT: ρ = -0.579; peak KAM: ρ = 0.414; peak KRM: R = -0.568) and FFC peak hip flexor moment (PT: ρ = 0.418; peak KAM: ρ = -0.624; peak KRM: ρ = 0.517). Performance time was also significantly (p < 0.01) associated with horizontal exit velocity (ρ = -0.451) and, notably, multiplanar knee joint loading (peak KAM: ρ = -0.590; peak KRM: ρ = 0.525; peak KFM: ρ = -0.509). Cohen's d effect sizes (d) revealed that faster performers demonstrated significantly greater (p < 0.05; d = 1.1-1.7) multiplanar knee joint loading, as well as significantly greater (p < 0.05; d = 0.9-1.2) FFC peak hip flexor moments, PFC average horizontal GRFs, and peak knee adduction angles. To conclude, mechanics associated with faster cutting performance seem to be "at odds" with lower multiplanar knee joint loads. This highlights the potential performance-injury conflict present during cutting.
Collapse
Affiliation(s)
- Alistair J McBurnie
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | | | | |
Collapse
|
36
|
Dos’Santos T, McBurnie A, Donelon T, Thomas C, Comfort P, Jones PA. A qualitative screening tool to identify athletes with ‘high-risk’ movement mechanics during cutting: The cutting movement assessment score (CMAS). Phys Ther Sport 2019; 38:152-161. [DOI: 10.1016/j.ptsp.2019.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 01/14/2023]
|
37
|
The effect of limb dominance on change of direction biomechanics: A systematic review of its importance for injury risk. Phys Ther Sport 2019; 37:179-189. [DOI: 10.1016/j.ptsp.2019.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 01/14/2023]
|
38
|
Dos'Santos T, Thomas C, Comfort P, Jones PA. Role of the Penultimate Foot Contact During Change of Direction: Implications on Performance and Risk of Injury. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000395] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Dos'Santos T, Thomas C, Comfort P, Jones PA. The Effect of Angle and Velocity on Change of Direction Biomechanics: An Angle-Velocity Trade-Off. Sports Med 2018; 48:2235-2253. [PMID: 30094799 PMCID: PMC6132493 DOI: 10.1007/s40279-018-0968-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Changes of direction (CODs) are key manoeuvres linked to decisive moments in sport and are also key actions associated with lower limb injuries. During sport athletes perform a diverse range of CODs, from various approach velocities and angles, thus the ability to change direction safely and quickly is of great interest. To our knowledge, a comprehensive review examining the influence of angle and velocity on change of direction (COD) biomechanics does not exist. Findings of previous research indicate the biomechanical demands of CODs are 'angle' and 'velocity' dependent and are both critical factors that affect the technical execution of directional changes, deceleration and reacceleration requirements, knee joint loading, and lower limb muscle activity. Thus, these two factors regulate the progression and regression in COD intensity. Specifically, faster and sharper CODs elevate the relative risk of injury due to the greater associative knee joint loading; however, faster and sharper directional changes are key manoeuvres for successful performance in multidirectional sport, which subsequently creates a 'performance-injury conflict' for practitioners and athletes. This conflict, however, may be mediated by an athlete's physical capacity (i.e. ability to rapidly produce force and neuromuscular control). Furthermore, an 'angle-velocity trade-off' exists during CODs, whereby faster approaches compromise the execution of the intended COD; this is influenced by an athlete's physical capacity. Therefore, practitioners and researchers should acknowledge and understand the implications of angle and velocity on COD biomechanics when: (1) interpreting biomechanical research; (2) coaching COD technique; (3) designing and prescribing COD training and injury reduction programs; (4) conditioning athletes to tolerate the physical demands of directional changes; (5) screening COD technique; and (6) progressing and regressing COD intensity, specifically when working with novice or previously injured athletes rehabilitating from an injury.
Collapse
Affiliation(s)
- Thomas Dos'Santos
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK.
| | - Christopher Thomas
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
- School of Health, Sport and Professional Practice, University of South Wales, Pontypridd, Wales, UK
| | - Paul Comfort
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
| | - Paul A Jones
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, UK
| |
Collapse
|
40
|
Dos'Santos T, Comfort P, Jones PA. Average of trial peaks versus peak of average profile: impact on change of direction biomechanics. Sports Biomech 2018; 19:483-492. [PMID: 30124388 DOI: 10.1080/14763141.2018.1497197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aims of this study were twofold: firstly, to compare lower limb kinematic and kinetic variables during a sprint and 90° cutting task between two averaging methods of obtaining discrete data (peak of average profile vs. average of individual trial peaks); secondly, to determine the effect of averaging methods on participant ranking of each variable within a group. Twenty-two participants, from multiple sports, performed a 90° cut, whereby lower limb kinematics and kinetics were assessed via 3D motion and ground reaction force (GRF) analysis. Six of the eight dependent variables (vertical and horizontal GRF; hip flexor, knee flexor, and knee abduction moments, and knee abduction angle) were significantly greater (p ≤ 0.001, g = 0.10-0.37, 2.74-10.40%) when expressed as an average of trial peaks compared to peak of average profiles. Trivial (g ≤ 0.04) and minimal differences (≤ 0.94%) were observed in peak hip and knee flexion angle between averaging methods. Very strong correlations (ρ ≥ 0.901, p < 0.001) were observed for rankings of participants between averaging methods for all variables. Practitioners and researchers should obtain discrete data based on the average of trial peaks because it is not influenced by misalignments and variations in trial peak locations, in contrast to the peak from average profile.
Collapse
Affiliation(s)
- Thomas Dos'Santos
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford , Greater Manchester, UK
| | - Paul Comfort
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford , Greater Manchester, UK
| | - Paul A Jones
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford , Greater Manchester, UK
| |
Collapse
|
41
|
A Novel and Safe Approach to Simulate Cutting Movements Using Ground Reaction Forces. SENSORS 2018; 18:s18082631. [PMID: 30103484 PMCID: PMC6111832 DOI: 10.3390/s18082631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/05/2022]
Abstract
Control of shear ground reaction forces (sGRF) is important in performing running and cutting tasks as poor sGRF control has implications for those with knee injuries, such as anterior cruciate ligament (ACL) ruptures. The goal of this study was to develop a novel and safe task to evaluate control or accurate modulation of shear ground reaction forces related to those generated during cutting. Our approach utilized a force control task using real-time visual feedback of a subject’s force production and evaluated control capabilities through accuracy and divergence measurements. Ten healthy recreational athletes completed the force control task while force control via accuracy measures and divergence calculations was investigated. Participants were able to accurately control sGRF in multiple directions based on error measurements. Forces generated during the task were equal to or greater than those measured during a number of functional activities. We found no significant difference in the divergence of the force profiles using the Lyapunov Exponent of the sGRF trajectories. Participants using our approach produced high accuracy and low divergence force profiles and functional force magnitudes. Moving forward, we will utilize this task in at-risk populations who are unable to complete a cutting maneuver in early stages of rehabilitation, such as ACL deficient and newly reconstructed individuals, allowing insight into force control not obtainable otherwise.
Collapse
|
42
|
DosʼSantos T, Thomas C, Jones PA, Comfort P. Asymmetries in Isometric Force-Time Characteristics Are Not Detrimental to Change of Direction Speed. J Strength Cond Res 2018; 32:520-527. [PMID: 29360677 DOI: 10.1519/jsc.0000000000002327] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dos'Santos, T, Thomas, C, Jones, PA, and Comfort, P. Asymmetries in isometric force-time characteristics are not detrimental to change of direction speed. J Strength Cond Res 32(2): 520-527, 2018-The purpose of this study was to determine the impact of between-limb asymmetries in isometric midthigh pull (IMTP) force-time characteristics on change of direction speed (CODS). Twenty multisport collegiate athletes (mean ± SD: age: 21.0 ± 1.9 years; mass: 78.7 ± 8.9 kg; and height: 1.77 ± 0.04 m) performed 3 unilateral stance IMTP trials per limb and 3 modified 505 CODS trials each side to establish imbalances between left and right and dominant (D) and nondominant (ND) limbs. Limb dominance was defined as the limb that produced the highest isometric force-time value or faster CODS performance. Paired sample t-tests and Hedges g effect sizes revealed no significant differences in IMTP force-time characteristics and CODS performance between left and right limbs (p > 0.05, g ≤ 0.37). However, significant differences were observed between D and ND limbs for all IMTP force-time characteristics and CODS performance (p < 0.001, g = 0.39-0.73). No significant correlations were observed between IMTP asymmetries and CODS asymmetry (p ≥ 0.380, r ≤ -0.35), and no significant differences were observed in CODS performance between athletes of lesser and greater IMTP asymmetries (p ≥ 0.10, g ≤ 0.76). Poor percentage agreements (40-60%) between like-for-like classifications of asymmetry (i.e., either both asymmetrical or both balanced) for CODS and IMTP force-time characteristics were demonstrated. Asymmetries in IMTP force-time characteristics and CODS performance were present; however, greater IMTP asymmetries had no detrimental impact on CODS performance and did not equate to greater asymmetries in CODS performance. Therefore, collegiate athletes with asymmetries within the range reported within this study (≤13%) should not experience detriments to CODS or faster performance from that limb during 180° turns.
Collapse
Affiliation(s)
- Thomas DosʼSantos
- Human Performance Laboratory, Directorate of Sport, Exercise, and Physiotherapy, University of Salford, Greater Manchester, United Kingdom
| | | | | | | |
Collapse
|
43
|
The Role of Eccentric Strength in 180° Turns in Female Soccer Players. Sports (Basel) 2017; 5:sports5020042. [PMID: 29910402 PMCID: PMC5968983 DOI: 10.3390/sports5020042] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/17/2022] Open
Abstract
Previous studies have reported an association between eccentric strength (ECC-STR) and change of direction (COD) ability. Little is known about how ECC-STR facilitates COD maneuvers. The aim of this study was to examine the role of ECC-STR during a 180° COD task in 18 female soccer players. Each player performed six trials of a 180° COD task whereby three-dimensional motion data from 10 Qualisys Pro-Reflex infrared cameras (240 Hz) and ground reaction forces (GRFs) from two AMTI force platforms (1200 Hz) were collected. Relative eccentric knee extensor (ECC-EXT) and flexor (ECC-FLEX) peak torque was collected from both limbs at 60°·s−1 using a Kin Com isokinetic dynamometer. Large correlations were revealed between COD performance (time to complete 5 m approach, 180° turn, 5 m return) and ECC-EXT (R = −0.674) and ECC-FLEX (R = −0.603). Moderate to large correlations were observed between approach velocity (AV) and COD performance (R = −0.484) and ECC-EXT (R = 0.724). Stronger participants (n = 9) recorded significantly (p < 0.05) faster AV (4.01 ± 0.18 vs. 3.74 ± 0.24 m·s−1, d = 1.27) and a greater reduction in velocity (−1.55 ± 0.17 vs. −1.37 ± 0.21 m·s−1, d = −0.94) during penultimate contact than weaker (n = 9) subjects. Greater ECC-STR is associated with faster COD performance in female soccer players, as stronger players are better able to decelerate during penultimate contact from faster approach velocities.
Collapse
|
44
|
Asymmetries in single and triple hop are not detrimental to change of direction speed. ACTA ACUST UNITED AC 2017. [DOI: 10.17338/trainology.6.2_35] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|