1
|
Cohen JW, Vieira TM, Ivanova TD, Garland SJ. Regional recruitment and differential behavior of motor units during postural control in older adults. J Neurophysiol 2023; 130:1321-1333. [PMID: 37877159 PMCID: PMC10972635 DOI: 10.1152/jn.00068.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Aging is associated with neuromuscular system changes that may have implications for the recruitment and firing behaviors of motor units (MUs). In previous studies, we observed that young adults recruit subpopulations of triceps surae MUs during tasks that involved leaning in five directions: common units that were active during different leaning directions and unique units that were active in only one leaning direction. Furthermore, the MU subpopulation firing behaviors [average firing rate (AFR), coefficient of variation (CoVISI), and intermittent firing] modulated with leaning direction. The purpose of this study was to examine whether older adults exhibited this regional recruitment of MUs and firing behaviors. Seventeen older adults (aged 74.8 ± 5.3 yr) stood on a force platform and maintained their center of pressure leaning in five directions. High-density surface electromyography recordings from the triceps surae were decomposed into single MU action potentials. A MU tracking analysis identified groups of MUs as being common or unique across the leaning directions. Although leaning in different directions did not affect the AFR and CoVISI of common units (P > 0.05), the unique units responded to the leaning directions by increasing AFR and CoVISI, albeit modestly (F = 18.51, P < 0.001). The unique units increased their intermittency with forward leaning (F = 9.22, P = 0.003). The mediolateral barycenter positions of MU activity in both subpopulations were found in similar locations for all leaning directions (P > 0.05). These neuromuscular changes may contribute to the reduced balance performance seen in older adults.NEW & NOTEWORTHY In this study, we observed differences in motor unit recruitment and firing behaviors of distinct subpopulations of motor units in the older adult triceps surae muscle from those observed in the young adult. Our results suggest that the older adult central nervous system may partially lose the ability to regionally recruit and differentially control motor units. This finding may be an underlying cause of balance difficulties in older adults during directionally challenging leaning tasks.
Collapse
Affiliation(s)
- Joshua W Cohen
- School of Kinesiology, Western University, London, Ontario, Canada
- Faculty of Health Sciences, School of Physical Therapy, Western University, London, Ontario, Canada
| | - Taian M Vieira
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Tanya D Ivanova
- Faculty of Health Sciences, School of Physical Therapy, Western University, London, Ontario, Canada
| | - S Jayne Garland
- Faculty of Health Sciences, School of Physical Therapy, Western University, London, Ontario, Canada
- Collaborative Specialization in Musculoskeletal Health Research, Bone and Joint Institute, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Taki C, Nakata A, Shiozawa N, Kiyono K, Kimura T. Cross-correlated fractal components of H-wave amplitude fluctuations in medial gastrocnemius and soleus muscles. Neurosci Lett 2021; 765:136264. [PMID: 34563622 DOI: 10.1016/j.neulet.2021.136264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
The time series of the H-wave amplitude in soleus muscle (SOL) shows fractal (long-range) correlation, which is attributed to input from supraspinal centers. However, whether such long-range power-law correlated input also contributes to the synergistic muscles remains unclear. The purpose of this study was therefore to examine the correlation in the fractal components of H-wave amplitude fluctuations between the synergistic muscles used for plantar flexion, i.e., the medial head of the gastrocnemius muscle (MG) and SOL. In eight young male participants, consecutive H-reflexes were recorded almost simultaneously from the MG and SOL at a stimulation frequency of 0.5 Hz for 30 min. We performed detrending moving-average cross-correlation analysis (DMCA) for each of the H- and M-wave amplitude time series between MG and SOL to assess the existence of a common noise input contributing to these long-range correlations. The cross-correlation coefficient ρDMCA (-1 to 1) was calculated to quantify the strength of the correlation between two different time series. The results indicated a significant long-range power-law correlation between H-wave amplitudes in MG and SOL (ρDMCA: 0.50 (0.22) and 0.22 (0.17), mean (standard deviation) for the original and randomly shuffled surrogate data, respectively, P < 0.05). This was not the case for M-wave amplitudes (ρDMCA: 0.29 (0.23) and 0.20 (0.15), P > 0.05). We conclude that there is a common noise input governing these synergistic muscles, possibly due to supraspinal origin, causing long-range power-law correlations in monosynaptic reflexes.
Collapse
Affiliation(s)
- Chinami Taki
- Graduate School of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan; Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan; Division of Physical and Health Education, Setsunan University, 17-8 Ikedanakamachi, Neyagawa, Osaka 572-8508, Japan.
| | - Akio Nakata
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Naruhiro Shiozawa
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Tetsuya Kimura
- Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Vieira TM, Botter A. The Accurate Assessment of Muscle Excitation Requires the Detection of Multiple Surface Electromyograms. Exerc Sport Sci Rev 2021; 49:23-34. [PMID: 33044329 DOI: 10.1249/jes.0000000000000240] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When sampling electromyograms (EMGs) with one pair of electrodes, it seems implicitly assumed the detected signal reflects the net muscle excitation. However, this assumption is discredited by observations of local muscle excitation. Therefore, we hypothesize that the accurate assessment of muscle excitation requires multiple EMG detection and consideration of electrode-fiber alignment. We advise prudence when drawing inferences from individually collected EMGs.
Collapse
|
4
|
Kwon YT, Norton JJS, Cutrone A, Lim HR, Kwon S, Choi JJ, Kim HS, Jang YC, Wolpaw JR, Yeo WH. Breathable, large-area epidermal electronic systems for recording electromyographic activity during operant conditioning of H-reflex. Biosens Bioelectron 2020; 165:112404. [PMID: 32729524 PMCID: PMC7484316 DOI: 10.1016/j.bios.2020.112404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
Operant conditioning of Hoffmann's reflex (H-reflex) is a non-invasive and targeted therapeutic intervention for patients with movement disorders following spinal cord injury. The reflex-conditioning protocol uses electromyography (EMG) to measure reflexes from specific muscles elicited using transcutaneous electrical stimulation. Despite recent advances in wearable electronics, existing EMG systems that measure muscle activity for operant conditioning of spinal reflexes still use rigid metal electrodes with conductive gels and aggressive adhesives, while requiring precise positioning to ensure reliability of data across experimental sessions. Here, we present the first large-area epidermal electronic system (L-EES) and demonstrate its use in every step of the reflex-conditioning protocol. The L-EES is a stretchable and breathable composite of nanomembrane electrodes (16 electrodes in a four by four array), elastomer, and fabric. The nanomembrane electrode array enables EMG recording from a large surface area on the skin and the breathable elastomer with fabric is biocompatible and comfortable for patients. We show that L-EES can record direct muscle responses (M-waves) and H-reflexes, both of which are comparable to those recorded using conventional EMG recording systems. In addition, L-EES may improve the reflex-conditioning protocol; it has potential to automatically optimize EMG electrode positioning, which may reduce setup time and error across experimental sessions.
Collapse
Affiliation(s)
- Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James J S Norton
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA; Stratton VA Medical Center, Albany, NY, 12208, USA
| | - Andrew Cutrone
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shinjae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeongmoon J Choi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hee Seok Kim
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36608, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA; Stratton VA Medical Center, Albany, NY, 12208, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Flexible and Wearable Electronics Advanced Research Program, Neural Engineering Center, Institute for Materials, and Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
5
|
Rodriguez-Falces J, Vieira T, Place N, Botter A. Potentiation of the first and second phases of the M wave after maximal voluntary contractions in the biceps brachii muscle. Med Biol Eng Comput 2019; 57:2231-2244. [PMID: 31410691 DOI: 10.1007/s11517-019-02025-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
The study was undertaken to examine separately the potentiation of the first and second phases of the M wave in biceps brachii after conditioning maximal voluntary contractions (MVCs) of different durations. M waves were evoked in the biceps brachii muscle before and after isometric MVCs of 1, 3, 6, 10, 30, and 60 s. The amplitude, duration, and area of the first and second phases of monopolar M waves were measured during the 10-min period following each contraction. Our results indicated that the amplitude and area of the M-wave first phase increased after MVCs of long (≥ 30 s) duration (P < 0.05), while it decreased after MVCs of short (≤ 10 s) duration (P < 0.05). The enlargement after the long MVCs persisted for 5 min, whereas the depression after the short contractions lasted only for 15 s. The amplitude of the second phase increased immediately (1 s) after all MVCs tested (P < 0.05), regardless of their duration, and then returned rapidly (10 s) to control levels. Unexpectedly, the amplitude of the second phase decreased below control values between 15 s and 1 min after the MVCs lasting ≥ 6 s (P < 0.05). Our results reinforce the idea that the presence of fatigue is a necessary condition to induce an enlargement of the M-wave first phase and that this enlargement would be greater (and occur sooner) in muscles with a predominance of type II fibers (quadriceps and biceps brachii) compared to type-I predominant muscles (tibialis anterior). The unique findings observed for the M-wave second phase indicate that changes in this phase are highly muscle dependent. Graphical abstract Left panel-Representative examples of M waves recorded in one participant before (control) and at various times after conditioning maximal voluntary contractions (MVCs) of short (a1) and long (a2) duration. Left panel-Time course of recovery of the amplitude of the first (b1) and second (b2) phases of the M wave after conditioning MVCs of different durations.
Collapse
Affiliation(s)
- Javier Rodriguez-Falces
- Department of Electrical and Electronical Engineering, Public University of Navarra, Pamplona, Spain. .,Department of Electrical and Electronical Engineering, Universidad Pública de Navarra D.I.E.E, Campus de Arrosadía s/n, 31006, Pamplona, Spain.
| | - Taian Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Torino, Italy
| | - Nicolas Place
- Institute of Sport Sciences, Faculty of Biology Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Torino, Italy
| |
Collapse
|
6
|
Cerone GL, Vieira TMM, Botter A, Gazzoni M. Design of a Wireless, Modular and Programmable Neuromuscular Electrical Stimulator . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2019:3815-3818. [PMID: 31946705 DOI: 10.1109/embc.2019.8856848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The use of electrical stimulation to elicit single twitches and tetanic contractions of skeletal muscles has increased markedly in the last years, with applications ranging from basic physiology to clinical settings. Addressing all possible needs required by different applications with an electrical stimulator is challenging as it requires the device to be highly flexible in terms of stimulation configurations (number of channels and electrode location), and possibility to control the stimulation patterns (timing and stimulation profiles). This paper describes a new wireless, modular, and programmable electrical stimulator integrating the possibility to acquire and use biomechanical signals to trigger the stimulation output. A closed-loop FES Cycling setup has been presented to show a possible application of the system.
Collapse
|
7
|
Cerone GL, Botter A, Gazzoni M. A Modular, Smart, and Wearable System for High Density sEMG Detection. IEEE Trans Biomed Eng 2019; 66:3371-3380. [PMID: 30869608 DOI: 10.1109/tbme.2019.2904398] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The use of linear or bi-dimensional electrode arrays for surface EMG detection (HD-sEMG) is gaining attention as it increases the amount and reliability of information extracted from the surface EMG. However, the complexity of the setup and the encumbrance of HD-sEMG hardware currently limits its use in dynamic conditions. The aim of this paper was to develop a miniaturized, wireless, and modular HD-sEMG acquisition system for applications requiring high portability and robustness to movement artifacts. METHODS A system with modular architecture was designed. Its core is a miniaturized 32-channel amplifier (Sensor Unit - SU) sampling at 2048 sps/ch with 16 bit resolution and wirelessly transmitting data to a PC or a mobile device. Each SU is a node of a Body Sensor Network for the synchronous signal acquisition from different muscles. RESULTS A prototype with two SUs was developed and tested. Each SU is small (3.4 cm × 3 cm × 1.5 cm), light (16.7 g), and can be connected directly to the electrodes; thus, avoiding the need for customary, wired setup. It allows to detect HD-sEMG signals with an average noise of 1.8 μVRMS and high performance in terms of rejection of power-line interference and motion artefacts. Tests performed on two SUs showed no data loss in a 22 m range and a ±500 μs maximum synchronization delay. CONCLUSIONS Data collected in a wide spectrum of experimental conditions confirmed the functionality of the designed architecture and the quality of the acquired signals. SIGNIFICANCE By simplifying the experimental setup, reducing the hardware encumbrance, and improving signal quality during dynamic contractions, the developed system opens new perspectives in the use of HD-sEMG in applied and clinical settings.
Collapse
|
8
|
Özyurt MG, Shabsog M, Dursun M, Türker KS. Optimal location for eliciting the tibial H-reflex and motor response. Muscle Nerve 2018; 58:828-833. [DOI: 10.1002/mus.26308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mohammed Shabsog
- School of Medicine; Koç University, Rumelifeneri Yolu, 34450; Istanbul Turkey
| | - Merve Dursun
- School of Medicine; Koç University, Rumelifeneri Yolu, 34450; Istanbul Turkey
| | - Kemal S. Türker
- School of Medicine; Koç University, Rumelifeneri Yolu, 34450; Istanbul Turkey
| |
Collapse
|
9
|
Eftekhar A, Norton JJS, McDonough CM, Wolpaw JR. Retraining Reflexes: Clinical Translation of Spinal Reflex Operant Conditioning. Neurotherapeutics 2018; 15:669-683. [PMID: 29987761 PMCID: PMC6095771 DOI: 10.1007/s13311-018-0643-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders, such as spinal cord injury, stroke, traumatic brain injury, cerebral palsy, and multiple sclerosis cause motor impairments that are a huge burden at the individual, family, and societal levels. Spinal reflex abnormalities contribute to these impairments. Spinal reflex measurements play important roles in characterizing and monitoring neurological disorders and their associated motor impairments, such as spasticity, which affects nearly half of those with neurological disorders. Spinal reflexes can also serve as therapeutic targets themselves. Operant conditioning protocols can target beneficial plasticity to key reflex pathways; they can thereby trigger wider plasticity that improves impaired motor skills, such as locomotion. These protocols may complement standard therapies such as locomotor training and enhance functional recovery. This paper reviews the value of spinal reflexes and the therapeutic promise of spinal reflex operant conditioning protocols; it also considers the complex process of translating this promise into clinical reality.
Collapse
Affiliation(s)
- Amir Eftekhar
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - James J S Norton
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Christine M McDonough
- School of Health and Rehabilitation Services, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Neurology, Stratton VA Medical Center, Albany, NY, USA
| |
Collapse
|
10
|
Reliability of the twitch evoked skeletal muscle electromechanical efficiency: A ratio between tensiomyogram and M-wave amplitudes. J Electromyogr Kinesiol 2017; 37:108-116. [DOI: 10.1016/j.jelekin.2017.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/25/2017] [Accepted: 10/11/2017] [Indexed: 12/28/2022] Open
|