1
|
Raghuraman RN, Srinivasan D. The effects of soft vs. rigid back-support exoskeletons on trunk dynamic stability and trunk-pelvis coordination in young and old adults during repetitive lifting. J Biomech 2024; 176:112348. [PMID: 39357341 DOI: 10.1016/j.jbiomech.2024.112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
While back-support exoskeletons are increasing in popularity as an ergonomic intervention for manual material handling, they may cause alterations to neuromuscular control required for maintaining spinal stability. This study evaluated the effects of soft and rigid passive exoskeletons on trunk local dynamic stability and trunk-pelvis coordination. Thiry-two young (18-30 years) and old (45-60 years) men and women completed repetitive lifting and lowering tasks using two different exoskeletons and in a control condition. Both exoskeletons significantly reduced the short-term maximum Lyapunov exponent (LyE) of the trunk (p < 0.01), suggesting improved local dynamic stability. There was also a significant main effect of age (p = 0.05): older adults exhibited lower short-term LyE that young adults. Use of the soft exoskeleton significantly increased, while the rigid exoskeleton significantly decreased, long-term LyE, and these changes were more pronounced in the young group compared to the old group. Additionally, exoskeleton use resulted in significant increase (p < 0.001) of mean absolute relative phase (MARP) and deviation phase (DP) by ∼30-60 %, with greater increases due to the rigid than the soft device. Thus, trunk-pelvic coordination and coordination variability were negatively impacted by exoskeleton use. Potential reasons for these findings may include exoskeleton-induced changes in lifting strategy, reduced peak trunk flexion velocity, and cycle-to-cycle variability of trunk velocity. Furthermore, although the soft and rigid devices caused comparable changes in trunk-extensor muscle activity, they exhibited differential effects on long-term maximum Lyapunov exponents as well as trunk-pelvic coordination, indicating that exoskeleton design features can have complex effects on trunk neuromuscular control.
Collapse
Affiliation(s)
| | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
2
|
Carnegie DR, Hirsch SM, Howarth SJ, Beach TAC. Can we enable individuals to reach further down without rounding their backs before beginning a lift? Examining the influence of starting foot and trunk position on reach depth. ERGONOMICS 2024; 67:1097-1107. [PMID: 37955653 DOI: 10.1080/00140139.2023.2282953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
There is disagreement regarding the efficacy of 'safe' lifting recommendations for reducing low back disorder risk. These recommendations commonly focus on minimising lumbar spine flexion, which limits the range of allowable starting lift positions for that person. This study evaluated whether starting postural adaptations could allow a person to reach down further without rounding their lumbar spine before beginning a lift. Reach displacement was measured as participants performed a series of maximal reach tasks under different combinations of stance width, foot orientation and trunk inclination, with their lumbar spine motion restricted. There were no interactions between any of the three postural adaptations or any effect of stance width or trunk inclination. Seventy-nine percent of participants achieved their greatest reach displacement with their feet externally rotated, which contributed to a 4 cm greater reach displacement compared to a neutral foot orientation (p < 0.001).Practitioner summary: This study examined whether aspects of initial posture could influence the ability to adhere to 'safe' lifting recommendations across a range of lift heights. As a component of lifting (re)training interventions, practitioners should consider starting lift posture adaptations (e.g. manipulating foot external rotation) to improve capacity to adhere to recommendations.
Collapse
Affiliation(s)
- Danielle R Carnegie
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Steven M Hirsch
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Canada
| | - Samuel J Howarth
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, Canada
| | - Tyson A C Beach
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Canada
| |
Collapse
|
3
|
Shannick J, Armstrong-Harper L, Sheppard E, Larson DJ, Brown SHM. Can training to dissociate trunk and pelvic motion influence thorax-pelvis coordination and lumbar spine dynamic stability? Musculoskelet Sci Pract 2024; 72:102955. [PMID: 38636346 DOI: 10.1016/j.msksp.2024.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The large number of articulating joints within the spinal column provides an abundance of options to control its movement. However, the ability of individuals to consciously manipulate these movement options is poorly understood. OBJECTIVES To determine if short-term training can improve the ability to consciously dissociate motion between the pelvis and thorax during repetitive pelvic tilting movements. DESIGN Cross-over design with young healthy individuals. METHOD Seventeen participants performed trials consisting of 35 continuous lift/lowers followed by 35 continuous anterior/posterior pelvic tilts while spine kinematics were recorded. Participants then underwent a 20-min training protocol designed to improve the control of pelvic motion and in particular the dissociation of pelvic and trunk motion. Post-training, the continuous pelvic tilt and lift/lower trials were repeated. Thorax-pelvis movement coordination was analyzed via vector coding and lumbar spine local dynamic stability was analyzed via Lyapunov exponents. Participants were grouped as being either high or low skill movers based on their ability to perform the pre-training pelvic tilt movements. RESULTS The low skill movement group demonstrated statistically significant increases in the time spent using in-phase pelvic dominant (p = 0.028) and anti-phase pelvic dominant (p = 0.043) coordination patterns during the pelvic tilt movements after the completion of the training protocol. The high skill movement group showed no differences in their movement patterns post-training. CONCLUSIONS Short-term training, targeted to improve the ability to dissociate pelvic from thorax motion, had a beneficial effect on the group of individuals who initially lacked skill performing the pelvic tilting task.
Collapse
Affiliation(s)
- Jordan Shannick
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Liam Armstrong-Harper
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Emma Sheppard
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Dennis J Larson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada; Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Ippersiel P, Larson DJ, Robbins SM. Using continuous relative phase and modified vector coding analyses to quantify spinal coordination and coordinative variability for healthy and chronic low back pain patients: An exploratory comparative analysis. J Biomech 2024; 172:112207. [PMID: 38968648 DOI: 10.1016/j.jbiomech.2024.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Differences in coordination and coordinative variability are common in people with low back pain. While differences may relate to the different analyses used to quantify these metrics, the preferred approach remains unclear. We aimed to compare coordination and coordinative variability, in people with and without low back pain performing a lifting/lowering task, using continuous relative phase and vector coding procedures, and to identify which technique better detects group differences. Upper lumbar (T12-L3), lower lumbar (L3-S1), and hip angular kinematics were measured using electromagnetic motion capture during 10 crate lifting/lowering repetitions from adults with (n = 47) and without (n = 17) low back pain. Coordination and coordinative variability for the Hip-Lower Lumbar and Lower Lumbar-Upper Lumbar joint pairs were quantified using mean absolute relative phase and deviation phase (continuous relative phase), and coupling angle and coupling angle variability (vector coding), respectively. T-tests examined group differences in coordination and variability. Cohen's d bootstrapping analyses identified the more sensitive technique for detecting group differences. Less in-phase and more variable behavior was observed in the low back pain group, mostly independent of joint pair and analytical technique (P < 0.05, Cohen's d range = 0.61 to 1.33). Qualitatively, the low back group limited motion at the lower lumbar spine during lifting/lowering. Continuous relative phase was more sensitive in detecting group differences in coordinative variability, while vector coding was more sensitive towards differences in coordination. These procedures convey distinct information and have their respective merits. Researchers should consider the choice of analytical techniques based on their study objectives.
Collapse
Affiliation(s)
- Patrick Ippersiel
- School of Physical and Occupational Therapy, McGill University, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Lethbridge-Layton-Mackay Rehabilitation Centre, Montreal, Quebec, Canada; School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Canada.
| | - Dennis J Larson
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| | - Shawn M Robbins
- School of Physical and Occupational Therapy, McGill University, Quebec, Canada; Centre for Interdisciplinary Research in Rehabilitation, Lethbridge-Layton-Mackay Rehabilitation Centre, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Ramirez VJ, Bazrgari B, Spencer A, Gao F, Samaan MA. Influence of Repetitions-to-Failure Deadlift on Lumbo-Pelvic Coordination, With and Without Body Armor. J Strength Cond Res 2024:00124278-990000000-00461. [PMID: 38917029 PMCID: PMC11412553 DOI: 10.1519/jsc.0000000000004871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
ABSTRACT Ramirez, VJ, Bazrgari, B, Spencer, A, Gao, F, and Samaan, MA. Influence of repetitions-to-failure deadlift on lumbo-pelvic coordination, with and without body armor. J Strength Cond Res XX(X): 000-000, 2024-Repetition-to-failure (RTF) deadlift is a training modality for building lifting capacity that is often implemented by service members to maintain a minimum level of physical fitness. Despite its physiological benefits, little is known about the effects of RTF on the biomechanics of lumbar spine. Additionally, the effects of heavy deadlift training with body armor are unknown. The aim of this study was to investigate the effects of RTF deadlift on lumbo-pelvic coordination and posture, with and without body armor. Twenty-three healthy subjects, recreational powerlifters, were recruited for this study. Kinematics of the trunk and pelvis were measured using a 3D motion capture system while subjects conducted RTF deadlifts with a 68-kg low-handle hexagonal bar with and without a simulated body armor (22.68 kg). Lumbo-pelvic coordination was characterized using a vector coding approach and coupling angle variability (CAV) using circular statistics, over 3 equally divided segments of the lifting phase. More specifically, the coupling angle values were used to determine the coordination pattern between the thorax and pelvis. Trunk and pelvis ranges of motion and the amount of in-phase lumbo-pelvic coordination pattern increased with RTF deadlift. Additionally, CAV of the first and the third segments of deadlift cycle increased with RTF deadlift. Increase in variability of lumbo-pelvic coordination and peak trunk flexion (i.e., indication of increased mechanical demand of lifting on the spine), as a result of RTF deadlifting, can have deleterious soft tissue responses and contribute to an increase in risk of lower back injury.
Collapse
Affiliation(s)
- Vanessa J Ramirez
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Departments of Kinesiology and Health Promotion, Lexington, Kentucky
| | - Babak Bazrgari
- Departments of Kinesiology and Health Promotion, Lexington, Kentucky
- Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Alexander Spencer
- Departments of Kinesiology and Health Promotion, Lexington, Kentucky
| | - Fan Gao
- Departments of Kinesiology and Health Promotion, Lexington, Kentucky
- Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Michael A Samaan
- Departments of Kinesiology and Health Promotion, Lexington, Kentucky
- Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
6
|
Zehr JD, Davidson JM, Callaghan JP. Implementing an accelerometer-based pelvis segment for low back kinetic analyses during dynamic movement tasks. J Biomech 2024; 166:112060. [PMID: 38537369 DOI: 10.1016/j.jbiomech.2024.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
An accelerometer-based pelvis has been employed to study segment and joint kinematics during scenarios involving close human-object interface and/or line-of-sight obstructions. However, its accuracy for examining low back kinetic outcomes is unknown. This study compared reaction moments and contact forces of the L5S1 joint calculated with an accelerometer-based and optically tracked pelvis segment. An approach to correct the global pelvis position as a function of thigh angle was developed. One participant performed four dynamic tasks: forward bend, squat, sit-to-stand-to-sit, and forward lunge. A standard bottom-up inverse dynamics approach was used and the root mean square error (RMSE) and coefficient of determination (R2) were calculated to examine kinetic differences between the optical and accelerometer approaches. The RMSE observed for L5S1 reaction flexion-extension moments ranged from 1.32 Nm to 2.20 Nm (R2 ≥ 0.98). The RMSE for net shear and compression reaction forces ranged from 2.13 to 10.45 N and 0.63 - 4.96 N, respectively. Similarly, the RMSE for L5S1 joint contact shear and compression ranged from 13.45 N to 19.51 N (R2 ≥ 0.85) and 31.18 N - 55.97 N (R2 ≥ 0.97), respectively. In conclusion, the accelerometer-based pelvis together with the approach to correct the global pelvis position is a feasible approach for computing low back kinetics with a single equivalent muscle model. The observed error in joint contact forces represents less than 5 % of the NIOSH recommended action limits and is unlikely to alter the interpretation of low back injury risk.
Collapse
Affiliation(s)
- Jackie D Zehr
- Human Performance Lab, University of Calgary, Calgary, Alberta, Canada
| | - Jessa M Davidson
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jack P Callaghan
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
7
|
Larson DJ, Summers E, Brown SHM. Exploring how metronome pacing at varying movement speeds influences local dynamic stability and coordination variability of lumbar spine motion during repetitive lifting. Hum Mov Sci 2024; 93:103178. [PMID: 38217964 DOI: 10.1016/j.humov.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
Auditory metronomes have been used to preserve movement consistency when examining local dynamic stability (LDS) and coordination variability (CV) of lumbar spine motion during repetitive movements. However, the potential influence of the metronome itself on these outcome measures has rarely been considered. Therefore, this study investigated the influence of different metronome paces (i.e., lifting speeds) on measures of lumbar spine LDS and thorax-pelvis CV during a repetitive lifting/lowering task in comparison to self-paced movements. Ten participants completed 5 repetitive lift/lower trials, where participants completed 35 consecutive repetitions (analysis on last 30 repetitions) at a self-selected pace for the first and last trial, and were paced by a 10 lift/min, 15 lift/min, and 20 lift/min metronome, in randomized order, for the remaining three trials. The average self-paced lift/lower speed before and after experiencing the three different metronome paced speeds was 16.2 (±1.02) and 17.2 (±0.73) lifts/min, respectively, and the most-preferred metronome pace trial was 15 lifts/min. Thorax-pelvis CV during the self-paced trials were similar (p > 0.05) to the 15 lift/min metronome paced trials, while greater thorax-pelvis CV was observed for the 10 lift/min compared to the 15 lift/min and 20 lift/min and second self-paced trial (all p < 0.026). This movement speed effect was not observed for lumbar spine LDS; however, more-dynamically stable movements were observed during all metronome paced trials in comparison to the self-paced trials. This study highlights that careful consideration is required when employing a metronome to control/manipulate movement characteristics while examining neuromuscular control using non-linear dynamical systems measures.
Collapse
Affiliation(s)
- Dennis J Larson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada; Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Elspeth Summers
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
8
|
Larson DJ, Brown SHM. Effects of trunk extensor muscle fatigue on repetitive lift (re)training using an augmented tactile feedback approach. ERGONOMICS 2023; 66:1919-1934. [PMID: 36636970 DOI: 10.1080/00140139.2023.2168769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Augmented tactile and performance feedback has been used to (re)train a modified lifting technique to reduce lumbar spine flexion, which has been associated with low back disorder development during occupational repetitive lifting tasks. However, it remains unknown if the presence of trunk extensor neuromuscular fatigue influences learning of this modified lifting technique. Therefore, we compared the effectiveness of using augmented tactile and performance feedback to reduce lumbar spine flexion during a repetitive lifting task, in both unfatigued and fatigued states. Participants completed repetitive lifting tests immediately before and after training, and 1-week later, with half of the participants completing training after fatiguing their trunk extensor muscles. Both groups demonstrated learning of the modified lifting technique as demonstrated by increased thorax-pelvis coordination variability and reduced lumbar range of motion variability; however, experiencing trunk extensor neuromuscular fatigue during lift (re)training may have slight negative influences on learning the modified lifting technique. Practitioner summary: An augmented lift (re)training paradigm using tactile cueing and performance feedback regarding key movement features (i.e. lumbar spine flexion) can effectively (re)train a modified lifting technique to reduce lumbar flexion and redistribute motion to the hips and knees. However, performing (re)training while fatigued could slightly hinder learning this lifting technique.
Collapse
Affiliation(s)
- Dennis J Larson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
9
|
Carnegie DR, Zehr JD, Howarth SJ, Beach TAC. Kinematic adaptations to restricting spine motion during symmetrical lifting. J Electromyogr Kinesiol 2022; 67:102716. [PMID: 36274440 DOI: 10.1016/j.jelekin.2022.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
When lifting an object from the ground a person has many possible whole-body movement solutions to accomplish the task. It is unclear why lifters use most of their available lumbar spine flexion range-of-motion despite many ergonomic guidelines advising against doing so. Experimentally restricting spine motion and observing compensatory movement strategies is one approach to address this knowledge gap. A kinematic analysis was performed on 16 participants who completed symmetrical lifting tasks with and without wearing a spine motion-restricting device. Sagittal trunk, lumbar spine, and lower extremity kinematics, along with stance width and foot orientation in the transverse plane were evaluated between restricted and unrestricted lifting conditions. Restricting spine motion required greater ankle dorsiflexion (p < 0.001), knee flexion (p < 0.001), and hip flexion (p < 0.001) motion in comparison to unrestricted lifting. Motion was reallocated such that hip flexion showed the largest increase in restricted lifting, followed by ankle dorsiflexion, then knee flexion compared to unrestricted lifting. Trunk inclination decreased (i.e., more upright) in restricted compared to unrestricted lifting (p < 0.001). Neither stance width (p = 0.163) nor foot orientation (p = 0.228) were affected by restricting spine motion. These adaptive movements observed indicate lower extremity joint motion must be available and controlled to minimize lumbar spine flexion during lifting.
Collapse
Affiliation(s)
- Danielle R Carnegie
- Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| | - Jackie D Zehr
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Samuel J Howarth
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, ON, Canada
| | - Tyson A C Beach
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
10
|
Zehr JD, Barrett JM, Callaghan JP. Cyclic loading history alters the joint compression tolerance and regional indentation responses in the cartilaginous endplate. J Mech Behav Biomed Mater 2022; 136:105542. [PMID: 36327666 DOI: 10.1016/j.jmbbm.2022.105542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
This study quantified the effect of subthreshold loading histories that differed by joint posture (neutral, flexed), peak loading variation (10%, 20%, 40%), and loading duration (1000, 3000, 5000 cycles) on the post-loading Ultimate Compressive Tolerance (UCT), yield force, and regional Cartilaginous End Plate (CEP) indentation responses (loading stiffness and creep displacement). One hundred and fourteen porcine spinal units were included. Following conditioning and cyclic compression exposures, spinal units were transected and one endplate from each vertebra underwent subsequent UCT or microindentation testing. UCT testing was conducted by compressing a single vertebra at a rate of 3 kN/s using an indenter fabricated to a representative intervertebral disc size and shape. Force and actuator position were sampled at 100 Hz. Non-destructive uniaxial CEP indentation was performed at five surface locations (central, anterior, posterior, right, left) using a Motoman robot and aluminum indenter (3 mm hemisphere). Force and end-effector position were sampled at 10 Hz. A significant three-way interaction was observed for UCT (p = 0.038). Compared to neutral, the UCT was, on average, 1.9 kN less following each flexed loading duration. No effect of variation was observed in flexion; however, 40% variation caused the UCT to decrease by an average of 2.13 kN and 2.06 kN following 3000 and 5000 cycles, respectively. The indentation stiffness in the central CEP mimicked the UCT response. These results demonstrate a profound effect of posture on post-loading UCT and CEP behaviour. Control of peak compression exposures became particularly relevant only when a neutral posture was maintained and beyond the midpoint of the predicated lifespan.
Collapse
Affiliation(s)
- Jackie D Zehr
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jeff M Barrett
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Jack P Callaghan
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
11
|
Nematimoez M, Thomas JS. The effect of head movement restriction on the kinematics of the spine during lifting and lowering tasks. ERGONOMICS 2022; 65:842-856. [PMID: 34694212 DOI: 10.1080/00140139.2021.1998646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to examine the effects of head movement restriction on relative angles and their derivatives using the stepwise segmentation approach during lifting and lowering tasks. Ten healthy men lifted and lowered a box using two styles (stoop and squat), with two loads (i.e. 10% and 20% of body weight); they performed these tasks with two instructed head postures [(1) Flexing the neck to keep contact between chin and chest over the task cycle; (2) No instruction, free head posture]. The neck flexion significantly affected the flexion angle of all segments of the spine and specifically the lumbar part. Additionally, this posture significantly affected the derivatives of the relative angles and manifested latency in spine segments movement, that is, cephalad-to-caudad or caudad-to-cephalad patterns. Conclusively, neck flexion as an awkward posture could increase the risk of low back pain during lifting and lowering tasks in occupational environments. Practitioner summary: Little information is available about the effects of neck flexion on other spine segments' kinematics and movement patterns, specifically about the lumbar spine. The result of this experimental study shows that neck flexion can increase the risk of low back pain by increasing lumbar flexion angle and spine awkward posture.
Collapse
Affiliation(s)
- Mehdi Nematimoez
- Department of Sport Science, University of Bojnord, Bojnord, Iran
| | - James S Thomas
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
12
|
Influence of back muscle fatigue on dynamic lumbar spine stability and coordination variability of the thorax-pelvis during repetitive flexion–extension movements. J Biomech 2022; 133:110959. [DOI: 10.1016/j.jbiomech.2022.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/19/2022]
|
13
|
Wasser JG, Acasio JC, Miller RH, Hendershot BD. Lumbopelvic coordination while walking in service members with unilateral lower limb loss: Comparing variabilities derived from vector coding and continuous relative phase. Gait Posture 2022; 92:284-289. [PMID: 34896840 DOI: 10.1016/j.gaitpost.2021.11.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Continuous relative phase and vector coding are two common approaches for quantifying lumbopelvic coordination and variability. Evaluating the application of such methodologies to the lower limb loss population is important for better understanding reported asymmetrical movement dynamics of the lumbopelvic region. RESEARCH QUESTION How do coordination variabilities derived from trunk-pelvic coupling angles and continuous relative phases compare among individuals with and without unilateral lower limb loss walking at self-selected speeds? METHODS Full-body kinematics were obtained from thirty-eight males with unilateral lower limb loss (23 transtibial and 15 transfemoral) and fifteen males without limb loss while walking along a 15 m walkway. Coordination variabilities were derived from trunk-pelvic coupling angles and continuous relative phases and compared using a multivariate approach, as well as in unilateral outcome measures between control participants and participants with lower limb loss. RESULTS Overall, tri-planar measures of continuous relative phase variability were 19-43% larger compared to coupling angle variabilities for individuals without limb loss and individuals with transtibial limb loss. Individuals with transfemoral limb loss had 27% and 31% larger sagittal and transverse variabilities from continuous relative phases compared to coupling angles, respectively. During both prosthetic and intact limb stance, individuals with transtibial limb loss had 19-35% greater tri-planar measures of continuous relative phase variability compared to coupling angle variabilities. During intact stance phase, tri-planar measures of continuous relative phase variability were 27%- 42% larger compared to coupling angle variabilities for individuals without limb loss. SIGNIFICANCE While both methods provide valid estimates of lumbopelvic movement variability during gait, continuous relative phase variability may provide a more sensitive estimate in the lower limb loss population capturing velocity-specific motions of the trunk and pelvis.
Collapse
Affiliation(s)
- Joseph G Wasser
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda 20814, USA; Henry M. Jackson Foundation, for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda 20817, USA.
| | - Julian C Acasio
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda 20814, USA; Henry M. Jackson Foundation, for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda 20817, USA.
| | - Ross H Miller
- Department of Kinesiology, University of Maryland, 2351 SPH Building, 4200 Valley Dr, College Park 20742, USA; Neuroscience & Cognitive Science Program, University of Maryland, College Park, USA.
| | - Brad D Hendershot
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, 4494 Palmer Rd N, Bethesda 20814, USA; DoD-VA Extremity Trauma & Amputation Center of Excellence, USA; Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda 20814, USA.
| |
Collapse
|
14
|
Effect of Age on Thoracic, Lumbar, and Pelvis Coordination During Trunk Flexion and Extension. J Appl Biomech 2022; 38:170-178. [DOI: 10.1123/jab.2021-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/11/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to investigate normative and age-related differences in trunk and pelvis kinematics and intersegmental coordination during sagittal plane flexion–extension. Trunk and pelvis kinematics were recorded while 76 participants performed a maximal range of motion task in the sagittal plane. Cross-correlation was calculated to determine the phase lag between adjacent segment motion, and coupling angles were calculated using vector coding and classified into one of 4 coordination patterns: in-phase, antiphase, superior, and inferior phase. A 2-way mixed-model multivariate analysis of variance was used to compare lumbar spine and pelvis angular kinematics, phase lags, and cross-correlation coefficients between groups. Young participants exhibited greater trunk range of motion compared with middle-aged participants. The lumbar spine and pelvis were predominantly rotating with minimum phase lag during flexion and extension movement for both age groups, and differences in coordination between the groups were seen during hyperextension and return to upright position. In conclusion, middle-aged adults displayed lower range of motion but maintained similar movement patterns to young adults, which could be attributed to protective mechanisms. Healthy lumbar and pelvis movement patterns are important to understand and need to be quantified as a baseline, which can be used to develop rehabilitation protocols for individuals with spinal ailments.
Collapse
|
15
|
Acasio JC, Nussbaum MA, Hendershot BD. Trunk-pelvic coordination during unstable sitting with varying task demand: A methodological study. J Biomech 2021; 118:110299. [PMID: 33581439 DOI: 10.1016/j.jbiomech.2021.110299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 11/25/2022]
Abstract
Unstable sitting is used commonly to evaluate trunk postural control (TPC), typically via measures based on center-of-pressure (CoP) time series. However, these measures do not directly reflect underlying control/movement strategies. We quantified trunk-pelvis coordination during unstable sitting using vector coding (VC) and correlated such coordination with CoP-based outcomes across varying task demands. Thirteen uninjured individuals (11 male/2 female) sat on an unstable chair at four instability levels, in a random order, defined relative to the individual gravitational gradient (∇G): 100, 75, 60, and 45%∇G. VC assessed trunk-pelvic coordination, and coupling angles classified movements as: 1) anti-phase, 2) in-phase, 3) trunk-phase, or 4) pelvic-phase. With decreasing %∇G (i.e., increasing instability), we found: increased anti-phase movement in the sagittal and frontal planes; decreased in-phase movement in the sagittal and frontal planes; and increased in-phase and pelvic-phase movement in the transverse plane. In the sagittal and frontal planes, we observed significant weak-to-moderate correlations between anti-phase and in-phase movements (0.288 < |ρ| < 0.549). Correlations between CoP-based measures and pelvic-phase and trunk-phase movements were typically weak and/or non-significant (|ρ| < 0.318). VC techniques discriminated between levels of instability during unstable sitting, identifying in-phase coordination (stiffening strategy) at lower instability levels and anti-phase coordination at higher instability levels. Compared to CoP-based measures, trunk coordination outcomes during unstable sitting provide measures of TPC that more directly quantify underlying movement strategies. These results can also serve as a baseline for future work investigating populations with impaired TPC (e.g., individuals with low back pain or limb loss).
Collapse
Affiliation(s)
- Julian C Acasio
- Research & Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Brad D Hendershot
- Research & Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA; Research & Surveillance Division, DoD-VA Extremity Trauma & Amputation Center of Excellence, USA; Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
16
|
Vazirian M, Shojaei I, Phillips M, Shapiro R, Bazrgari B. The immediate and prolonged effects of military body armor on the relative timing of thorax and pelvis rotations during toe-touch and two-legged squat tasks. J Biomech 2020; 111:110000. [PMID: 32858429 DOI: 10.1016/j.jbiomech.2020.110000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Although military body armor is an effective life saver, it considerably loads more weight on the warfighters, increasing the risk of musculoskeletal injury. This study investigated the immediate and prolonged effects of wearing body armor on timing aspect of lumbo-pelvic coordination during the toe-touch (TT) and two-legged-squat (TLS) tests. A cross-over study design was used wherein twelve asymptomatic and gender-balanced individuals completed two experimental sessions with and without body armor. A session included two similar sets of tests, before and after exposure to a treadmill walk, containing a TT and a TLS test with ten cycles of fast bending and return. Reflective markers were attached on the participants to capture the kinematics of body segments in conjunction with a motion capture system. The mean absolute relative phase (MARP) and deviation phase (DP) between the thorax and pelvis were calculated for each test. The pre-walk MARP in the return was significantly larger with versus without body armor (p = 0.022), while there were no significant effects of body armor on the other outcome measures. In addition, the pre-walk MARP and DP in the bending and return, as well as the walk-induced changes in the MARP in the bending phase were significantly larger in TLS versus TT (p < 0.026). Therefore, using a body armor immediately made the lumbo-pelvic coordination less in-phase during return, but no prolonged effects were found. Further investigation is necessary to specify chances wearing a body armor increases the risk of musculoskeletal injuries in the lower back and lower extremities joints.
Collapse
Affiliation(s)
- Milad Vazirian
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Iman Shojaei
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Megan Phillips
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Robert Shapiro
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Babak Bazrgari
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
17
|
Sung PS, Park MS. Lumbar spine coordination during axial trunk rotation in adolescents with and without right thoracic idiopathic scoliosis. Hum Mov Sci 2020; 73:102680. [PMID: 32920294 DOI: 10.1016/j.humov.2020.102680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a complex deformity that often leads to loss of coordination and dynamic posture. However, there is a lack of understanding on inter-segmental coordination in AIS. The purpose of this study was to compare spinal range of motion (ROM), as well as the relations to coupling angles (CA) in the spinal region during trunk rotation, between AIS and control subjects. There were 14 subjects with right thoracic AIS and 18 control subjects who participated in the study. All subjects were asked to perform five repeated axial trunk rotations in standing while holding a bar. The outcome measures included ROM at the first thoracic spinous process (T1), the seventh thoracic spinous process (T7), the twelfth thoracic spinous process (T12), and the first sacrum spinous tubercle (S1) by the motion capture system. The CA in each spinal region (trunk, lumbar spine, and lower and upper thoraces) were analyzed while considering age and body mass index (BMI). The Cobb angle demonstrated positive moderate relationships with ROM at T7 (r = 0.62, p = 0.04) and the CA in the upper thorax (r = 0.69, p = 0.02) in the AIS group. There was no CA difference at the spinous processes between groups; however, the lumbar spine ROM significantly decreased in the AIS group (t = 2.40, p = 0.02). The BMI demonstrated moderate relationships on the lumbar spine (r = -0.67, p = 0.02) in the AIS group and the lower thorax (r = 0.59, p = 0.01) in the control group. The lumbar spine was significantly dissociated in the AIS group during trunk rotation, although the Cobb angle demonstrated positive relationships with ROM at T7. Collectively, the inter-segmental CA indicated that the AIS group compensated more independently to the right thoracic convexity. MINI ABSTRACT: The coordinated trunk rotations in the adolescent idiopathic scoliosis (AIS) group were compared with the control subjects. The lumbar spine motion was dissociated with the thorax in the AIS group and was negatively correlated with body mass index. Clinicians need to consider thorax convexity and dissociated lumbar motion for compensatory and rehabilitation strategies.
Collapse
Affiliation(s)
- Paul S Sung
- Department of Physical Therapy/Motion Analysis Center, Herbert H. and Grace A. Dow College of Health Professions, Central Michigan University, Health Professions Building 1220, Mt. Pleasant, MI 48859, United States of America.
| | - Moon Soo Park
- Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Medical College of Hallym University, 22 beon-gil, Gwanpyeong-ro170, Dongan-gu, Anyang-si, Gyeonggi-do 14068, Republic of Korea
| |
Collapse
|
18
|
Lin H, Seerden S, Zhang X, Fu W, Vanwanseele B. Inter-segmental coordination of the spine is altered during lifting in patients with ankylosing spondylitis: A cross-sectional study. Medicine (Baltimore) 2020; 99:e18941. [PMID: 32000413 PMCID: PMC7004575 DOI: 10.1097/md.0000000000018941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The abnormal inter-segmental coordination of the spine during lifting could be used to monitor disease progression and rehabilitation efficacy in patients with ankylosing spondylitis (AS). This study aimed to compare the inter-segmental coordination patterns and variability of the spine during lifting between patients with AS (n = 9) and control (n = 15) groups.Continuous relative (CRP) and deviation (DP) phases between each segment of the spine (two lumbar and three thorax segments) and lumbosacral joint were calculated. The CRP and DP curves among participants were decomposed into few functional principal components (FPC) via functional principal component analysis (FPCA). The FPC score of CRP or DP of the two groups were compared, and its relationship with the indexes of spinal mobility was investigated.Compared with the control group, the AS patients showed more anti-phase coordination patterns in each relative upper spine segment and lumbosacral joint. In addition, either less or more variation was found in the coordination of each relative lower spine segment and lumbosacral joint during different time periods of lifting for these patients. Some cases were considerably related to spinal mobility.the inter-segmental coordination of the spine was altered during lifting in AS patients to enable movement, albeit inefficient and might cause spinal mobility impairment.
Collapse
Affiliation(s)
- Huijie Lin
- College of Teacher Education, Taizhou University, Linhai,
Zhejiang, China
| | - Stefan Seerden
- Department of Movement Sciences Group, KU Leuven, Leuven,
Belgium
| | - Xianyi Zhang
- Department of Movement Sciences Group, KU Leuven, Leuven,
Belgium
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of
Ministry of Education, Shanghai University of Sport, Shanghai, China
| | | |
Collapse
|
19
|
The Effects of Data Padding Techniques on Continuous Relative-Phase Analysis Using the Hilbert Transform. J Appl Biomech 2019; 35:247-255. [DOI: 10.1123/jab.2018-0396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Continuous relative phase (CRP) analysis using the Hilbert transform is prone to end effects. The purpose was to investigate the impact of padding techniques (reflection, spline extrapolation, extraneous data, and unpadded) on end effects following Hilbert-transformed CRP calculations, using sinusoidal, nonsinusoidal, and kinematic data from a repeated sit-to-stand-to-sit task in adults with low back pain (n = 16, mean age = 30 y). CRP angles were determined using a Hilbert transform of sinusoidal and nonsinusoidal signals with set phase shifts, and for the left thigh/sacrum segments. Root mean square difference and true error compared test signals with a gold standard, for the start, end, and full periods, for all data. Mean difference and 95% bootstrapped confidence intervals were calculated to compare padding techniques using kinematic data. The unpadded approach showed near-negligible error using sinusoidal data across all periods. No approach was clearly superior for nonsinusoidal data. Spline extrapolation showed significantly less root mean square difference (all periods) when compared with double reflection (full period: mean difference = 2.11; 95% confidence interval, 1.41 to 2.79) and unpadded approaches (full period: mean difference = −15.8; 95% confidence interval, −18.9 to −12.8). Padding sinusoidal data when performing CRP analyses are unnecessary. When extraneous data have not been collected, our findings recommend padding using a spline to minimize data distortion following Hilbert-transformed CRP analyses.
Collapse
|
20
|
Beaudette SM, Zwambag DP, Graham RB, Brown SHM. Discriminating spatiotemporal movement strategies during spine flexion-extension in healthy individuals. Spine J 2019; 19:1264-1275. [PMID: 30742973 DOI: 10.1016/j.spinee.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The spine is an anatomically complex system with numerous degrees of freedom. Due to this anatomical complexity, it is likely that multiple motor control options exist to complete a given task. PURPOSE To identify if distinct spine spatiotemporal movement strategies are utilized in a homogenous sample of young healthy participants. STUDY DESIGN Kinematic data were captured from a single cohort of male participants (N=51) during a simple, self-controlled spine flexion-extension task. METHODS Thoracic and lumbar flexion-extension data were analyzed to extract the continuous relative phase between each spine subsection. Continuous relative phase data were evaluated using a principal component analysis to identify major sources of variation in spine movement coordination. Unsupervised machine learning (k-means clustering) was used to identify distinct clusters present within the healthy participants sampled. Once distinguished, intersegmental spine kinematics were compared amongst clusters. RESULTS The findings of the current work suggest that there are distinct timing strategies that are utilized, within the participants sampled, to control spine flexion-extension movement. These strategies differentiate the sequencing of intersegmental movement and are not discriminable on the basis of simple participant demographic characteristics (ie, age, height, and body mass index), total movement time or range of motion. CONCLUSIONS Spatiotemporal spine flexion-extension patterns are not uniform across a population of young healthy individuals. CLINICAL SIGNIFICANCE Future work needs to identify whether the motor patterns characterized with this work are driven by distinct neuromuscular activation patterns, and if each given pattern has a varied risk for low back injury.
Collapse
Affiliation(s)
- Shawn M Beaudette
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa Ontario, Canada
| | - Derek P Zwambag
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo Ontario, Canada
| | - Ryan B Graham
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa Ontario, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph Ontario, Canada.
| |
Collapse
|
21
|
Zehr JD, Tennant LM, Callaghan JP. Incorporating loading variability into in vitro injury analyses and its effect on cumulative compression tolerance in porcine cervical spine units. J Biomech 2019; 88:48-54. [PMID: 30904332 DOI: 10.1016/j.jbiomech.2019.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
Abstract
During repetitive movement, low-back loading exposures are inherently variable in magnitude. The current study aimed to investigate how variation in successive compression exposures influences cumulative load tolerance in the spine. Forty-eight porcine cervical spine units were randomly assigned to one of six combinations of mean peak compression force (30%, 50%, 70% of the predicted tolerance) and loading variation (consistent peak amplitude, variable peak amplitude). Following preload and passive range-of-motion tests, specimens were positioned in a neutral posture and then cyclically loaded in compression until failure occurred or the maximum 12 h duration was reached. Specimens were dissected to classify macroscopic injury and measurements of cumulative load, cycles, and height loss sustained at failure were calculated. Statistical comparisons were made between loading protocols within each normalized compression group. A significant loading variation × compression interaction was demonstrated for cumulative load (p = 0.026) and cycles to failure (p = 0.021). Cumulative compression was reduced under all normalized compression loads (30% p = 0.016; 50% p = 0.030; 70% p = 0.020) when variable loading was incorporated. The largest reduction was by 33% and occurred in the 30% compression group. The number of sustained cycles was reduced by 31% (p = 0.017), 72% (p = 0.030), and 76% (p = 0.009) under normalized compression loads of 30%, 50%, and 70%, respectively. These findings suggest that variation in compression exposures interact to reduce cumulative compression tolerance of the spine and could elevate low-back injury risk during time-varying repetitive tasks.
Collapse
Affiliation(s)
- Jackie D Zehr
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Liana M Tennant
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Jack P Callaghan
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
22
|
Lim S, D'Souza C. Statistical prediction of load carriage mode and magnitude from inertial sensor derived gait kinematics. APPLIED ERGONOMICS 2019; 76:1-11. [PMID: 30642513 PMCID: PMC7079201 DOI: 10.1016/j.apergo.2018.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 05/25/2023]
Abstract
Load carriage induces systematic alterations in gait patterns and pelvic-thoracic coordination. Leveraging this information, the objective of this study was to develop and assess a statistical prediction algorithm that uses body-worn inertial sensor data for classifying load carrying modes and load levels. Nine men participated in an experiment carrying a hand load in four modes: one-handed right and left carry, and two-handed side and anterior carry, each at 50% and 75% of the participant's maximum acceptable weight of carry, and a no-load reference condition. Twelve gait parameters calculated from inertial sensor data for each gait cycle, including gait phase durations, torso and pelvis postural sway, and thoracic-pelvic coordination were used as predictors in a two-stage hierarchical random forest classification model with Bayesian inference. The model correctly classified 96.9% of the carrying modes and 93.1% of the load levels. Coronal thoracic-pelvic coordination and pelvis postural sway were the most relevant predictors although their relative importance differed between carrying mode and load level prediction models. This study presents an algorithmic framework for combining inertial sensing with statistical prediction with potential use for quantifying physical exposures from load carriage.
Collapse
Affiliation(s)
- Sol Lim
- Center for Ergonomics, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Clive D'Souza
- Center for Ergonomics, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Movement variability in adults with low back pain during sit-to-stand-to-sit. Clin Biomech (Bristol, Avon) 2018; 58:90-95. [PMID: 30064042 DOI: 10.1016/j.clinbiomech.2018.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/05/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Differences in movement variability may be related to a guarded response to pain or a less robust movement pattern, indicating a potential dysfunction in motor control. The study objective was to compare patterns of lumbo-pelvic coordinative variability, during repeated sit-to-stand-to-sit, in individuals with low back pain and healthy adults. METHODS Participants were adults with low back pain (n = 16) and healthy controls (n = 21). Kinematics for the T12-L3, L3-S1, and hip segments were measured using electromagnetic motion capture during 10 sit-to-stand-to-sit trials. Continuous relative phase analysis using the Hilbert transform method determined coordination and variability of the Hip-L3S1, and L3S1-T12L3 segments, deconstructed into 4 periods (start/up/down/end). T-tests compared coordination and variability of the full task between groups, and a mixed ANOVA compared the effects of group and period for the two segments. FINDINGS Across the full task, the low back pain group demonstrated more variable (mean difference = -6.95, 95% CI = -12.3 to -1.59) and greater out-of-phase behavior (mean difference = -22.6, 95% CI = -39.1 to -6.03) in the LHip-L3S1 segment. Group-period interaction effects revealed greater variability in the start period (mean difference = -0.325, 95% CI = -0.493 to -0.156) and more out-of-phase behavior in the start (mean difference = -0.350, 95% CI = -0.549 to -0.150) and end (mean difference = -0.354, 95% CI = -0.602 to -0.105) periods for the LHip-L3S1 segment. INTERPRETATION Excessive variability may relate to reports of poor spinal proprioception in low back pain; however, based on our sample characteristics (low pain and disability) and lack of symptoms during the task, classifying our findings as dysfunctional may not be fully warranted.
Collapse
|