Campbell E, Phinyomark A, Scheme E. Current Trends and Confounding Factors in Myoelectric Control: Limb Position and Contraction Intensity.
SENSORS (BASEL, SWITZERLAND) 2020;
20:E1613. [PMID:
32183215 PMCID:
PMC7146367 DOI:
10.3390/s20061613]
[Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022]
Abstract
This manuscript presents a hybrid study of a comprehensive review and a systematic(research) analysis. Myoelectric control is the cornerstone ofmany assistive technologies used in clinicalpractice, such as prosthetics and orthoses, and human-computer interaction, such as virtual reality control.Although the classification accuracy of such devices exceeds 90% in a controlled laboratory setting,myoelectric devices still face challenges in robustness to variability of daily living conditions.The intrinsic physiological mechanisms limiting practical implementations of myoelectric deviceswere explored: the limb position effect and the contraction intensity effect. The degradationof electromyography (EMG) pattern recognition in the presence of these factors was demonstratedon six datasets, where classification performance was 13% and 20% lower than the controlledsetting for the limb position and contraction intensity effect, respectively. The experimental designsof limb position and contraction intensity literature were surveyed. Current state-of-the-art trainingstrategies and robust algorithms for both effects were compiled and presented. Recommendationsfor future limb position effect studies include: the collection protocol providing exemplars of at least 6positions (four limb positions and three forearm orientations), three-dimensional space experimentaldesigns, transfer learning approaches, and multi-modal sensor configurations. Recommendationsfor future contraction intensity effect studies include: the collection of dynamic contractions, nonlinearcomplexity features, and proportional control.
Collapse