1
|
Zhang W, Chen X, Xu K, Xie H, Li D, Ding S, Sun J. Effect of unilateral training and bilateral training on physical performance: A meta-analysis. Front Physiol 2023; 14:1128250. [PMID: 37123275 PMCID: PMC10133687 DOI: 10.3389/fphys.2023.1128250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Background: In Unilateral (UNI) exercises are more effective than bilateral (BI) exercises in improving athletic performance is debatable. Objectives: this meta-analysis investigated the effects of UNI and BI exercises on different effect indicators of jump ability, sprint ability, maximal force, change of direction ability, and balance ability. Data Sources: PubMed, Google Scholar, Web of science, CNKI, Proquest, Wan Fang Data. Study Eligibility Criteria: To be eligible for inclusion in the meta-analysis, the study had to be: 1) athletes; 2) UNI training and BI training; 3) the intervention period had to be more than 6 weeks and the intervention frequency had to be more than 2 times/week; 4) the outcome indicators were jumping ability, sprinting ability, maximum strength, and change of direction and balance. Study Appraisal and Synthesis Method: We used the random-effects model for meta-analyses. Effect sizes (standardized mean difference), calculated from measures of horizontally oriented performance, were represented by the standardized mean difference and presented alongside 95% confidence intervals (CI). Results: A total of 28 papers met the inclusion criteria, and Meta-analysis showed that UNI training was more effective than BI training in improving jumping ability (ES = 0.61.0.23 to 0.09; Z = 3.12, p = 0.002 < 0.01), sprinting ability (ES = -0.02, -0.03 to -0.01; Z = 2.73, p = 0.006 < 0.01), maximum strength (ES = 8.95,2.30 to 15.61; Z = 2.64, p = 0.008 > 0.05), change of direction ability (ES = -0.03, -0.06 to 0.00; Z = 1.90, p = 0.06 > 0.01) and balance ability (ES = 1.41,-0.62 to 3.44; Z = 1.36, p = 0.17 > 0.01). The results of the analysis of moderating variables showed that intervention period, intervention frequency and intervention types all had different indicators of effect on exercise performance. Conclusion: UNI training has a more significant effect on jumping and strength quality for unilateral power patterns, and BI training has a more significant effect on jumping and strength quality for bilateral power patterns.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Sun
- *Correspondence: Jian Sun, ; Shicong Ding,
| |
Collapse
|
2
|
Neltner TJ, Anders JPV, Smith RW, Arnett JE, Keller JL, Housh TJ, Schmidt RJ, Johnson GO. Coactivation does not contribute to fatigue-induced decreases in torque during reciprocal, isokinetic muscle actions. ISOKINET EXERC SCI 2022. [DOI: 10.3233/ies-210229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Studies of coactivation have typically utilized single movement isometric or isokinetic fatiguing muscle actions. OBJECTIVE: The purpose of the current study was to examine coactivation of the biceps brachii (BB) and triceps brachii (TB) in response to a maximal, reciprocal, isokinetic fatiguing task of the forearm flexors and extensors at slow (60∘/s) and moderate (180∘/s) isokinetic velocities in men. METHODS: Ten men (mean ± SD: age = 21.6 ± 1.3 years) completed 50 consecutive, maximal, reciprocal, isokinetic muscle actions of the right forearm flexors and extensors at 60 and 180∘/s. The amplitude (AMP) and mean power frequency (MPF) contents of the electromyographic (EMG) and mechanomyographic (MMG) signals from the BB and TB were recorded simultaneously throughout the fatiguing task. Repeated measures ANOVAs with Tukey post hocs were used to determine mean differences for the torque and neuromuscular parameters across repetitions. RESULTS: The torque analyses indicated greater fatigability at 180∘/s, compared to 60∘/s (p= 0.02). There were no significant changes in EMG AMP for either muscle during flexion or extension at 60∘/s (p> 0.05). At 180∘/s, there were significant increases in agonist EMG AMP (p= 0.01 to 0.004), however, no changes in antagonist EMG AMP (p> 0.05). For EMG MPF, there were significant decreases during flexion and extension (p< 0.001 to p= 0.02) at both velocities, collapsed across Muscle. There were no significant (p> 0.05) changes across repetition for MMG AMP or MPF. CONCLUSIONS: This study indicated velocity-specific responses to fatigue, with a greater magnitude of fatigability at 180∘/s. Furthermore, despite increases in EMG AMP of the agonist muscles at 180∘/s only, it was not sufficient to alter the ratio of coactivation, likely due to common neural drive between muscles. Thus, the decreases in torque in the present study were not attributable to increases in coactivation.
Collapse
Affiliation(s)
- Tyler J. Neltner
- Department of Nutrition and Health Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| | - John Paul V. Anders
- Department of Nutrition and Health Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| | - Robert W. Smith
- Department of Nutrition and Health Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| | - Jocelyn E. Arnett
- Department of Nutrition and Health Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| | - Joshua L. Keller
- Department of Health, Kinesiology and Sport, University of South Alabama, Mobile, AL, USA
| | - Terry J. Housh
- Department of Nutrition and Health Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| | - Richard J. Schmidt
- Department of Nutrition and Health Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| | - Glen O. Johnson
- Department of Nutrition and Health Sciences, University of Nebraska – Lincoln, Lincoln, NE, USA
| |
Collapse
|
3
|
Neltner TJ, Anders JPV, Keller JL, Smith RW, Housh TJ, Schmidt RJ, Johnson GO. Velocity-Specific Coactivation and Neuromuscular Responses to Fatiguing, Reciprocal, Isokinetic, Forearm Flexion, and Extension Muscle Actions. J Strength Cond Res 2021; 36:649-660. [DOI: 10.1519/jsc.0000000000004190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Are mode-specific differences in performance fatigability attributable to muscle oxygenation? Eur J Appl Physiol 2021; 121:2243-2252. [PMID: 33893835 DOI: 10.1007/s00421-021-04694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of this study was to examine the composite, intra-individual, and inter-individual patterns of responses for deoxygenated hemoglobin and myoglobin (deoxy[heme]), oxygenated hemoglobin and myoglobin (oxy[heme]), total hemoglobin and myoglobin (total[heme]), and tissue saturation index (StO2%) during fatiguing, maximal, isokinetic, unilateral, and bilateral leg extensions. METHODS Nine men (Mean ± SD; age = 21.9 ± 2.4 years; height = 181.8 ± 11.9 cm; body mass = 85.8 ± 6.2 kg) performed 50 unilateral and bilateral maximal, concentric, isokinetic leg extensions at 180° s-1 on two separate visits. The muscle oxygenation parameters assessed with near-infrared spectroscopy from the dominant leg and isokinetic torque were averaged for 2 consecutive repetitions at 5 repetition intervals. Separate 2 (Condition [Unilateral and Bilateral]) × 10 (Repetition [5-50]) repeated measures ANOVAs were performed to examine mean differences for normalized isokinetic torque and each muscle oxygenation parameter. Intra- and inter-individual differences were examined with polynomial regression analyses. RESULTS For normalized isokinetic torque, the unilateral condition (56.3 ± 10.5%) exhibited greater performance fatigability than the bilateral condition (45.0 ± 18.7%). Collapsed across Condition, deoxy[heme] exhibited an increase (p < 0.001), while StO2% exhibited a decrease (p < 0.001). The bilateral condition exhibited a more sustained decline in oxy[heme] than the unilateral condition (p = 0.005). Deoxy[heme], oxy[heme], and total[heme] exhibited substantial intra- and inter-individual differences for the fatigue-induced patterns of response. CONCLUSION The present findings indicated that the greater performance fatigability for unilateral versus bilateral fatiguing, maximal, isokinetic leg extensions was not attributable to differences in muscle oxygenation. Future studies of muscle oxygenation should report individual and composite fatigue-induced patterns of responses due to the substantial intra- and inter-individual variabilities.
Collapse
|
5
|
Anders JPV, Keller JL, Smith CM, Hill EC, Neltner TJ, Housh TJ, Schmidt RJ, Johnson GO. Performance fatigability and the bilateral deficit during maximal, isokinetic leg extensions in men and women. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-202178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND: Few studies have examined sex differences in performance fatigability and the bilateral deficit in a dynamic modality. OBJECTIVES: The purpose of this study was to examine: 1) Leg-, mode-, and sex-specific differences in performance fatigability during maximal, dynamic leg extension muscle actions and; 2) the time course of fatigue-induced changes in the bilateral deficit for both men and women. METHODS: Eleven men and 11 women participated in 3 test visits consisting of 50 maximal, concentric, isokinetic leg extensions at 60∘/s. Each visit was randomized to perform either unilateral right leg only (RL), unilateral left leg only (LL), or bilateral (BL) leg extensions. RESULTS: The BL performance fatigability was significantly (p< 0.001) less than RL and LL. Both men and women demonstrated significant (p< 0.001) declines in moment and an attenuation of the bilateral deficit throughout the fatiguing task. There were no differences between sex for performance fatigability (p= 0.128) or the bilateral deficit (p= 0.102). CONCLUSIONS: Unilateral muscle actions were more susceptible to fatigue than BL muscle actions. Men exhibited an earlier decline in moment than women, however, men and women exhibited similar magnitudes and patterns of decline in the bilateral deficit.
Collapse
Affiliation(s)
- John Paul V. Anders
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Joshua L. Keller
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Cory M. Smith
- College of Human Sciences, Kinesiology, University of Texas at El Paso, TX, USA
| | - Ethan C. Hill
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Tyler J. Neltner
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Terry J. Housh
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Richard J. Schmidt
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Glen O. Johnson
- Department of Nutrition and Human Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
6
|
Moran J, Ramirez-Campillo R, Liew B, Chaabene H, Behm DG, García-Hermoso A, Izquierdo M, Granacher U. Effects of Bilateral and Unilateral Resistance Training on Horizontally Orientated Movement Performance: A Systematic Review and Meta-analysis. Sports Med 2021; 51:225-242. [PMID: 33104995 DOI: 10.1007/s40279-020-01367-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Both bilateral (BLE) and unilateral resistance exercise (ULE) methods can confer benefit to an athlete, but it remains to be established which has a greater effect on movement speed. OBJECTIVES To evaluate the effects of BLE and ULE on horizontal movement performance. DATA SOURCES Google Scholar, CrossRef, and PubMed. STUDY ELIGIBILITY CRITERIA To qualify for inclusion in the meta-analysis, studies must have included a resistance training intervention that compared the effects of BLE and ULE on a measure of movement speed such as sprinting in healthy study participants. STUDY APPRAISAL AND SYNTHESIS METHODS We used the inverse-variance random-effects model for meta-analyses. Effect sizes (standardised mean difference), calculated from measures of horizontally orientated performance, were represented by the standardised mean difference and presented alongside 95% confidence intervals (CI). RESULTS Though both modalities were effective (BLE = 0.60 [95% CI 0.34, 0.87], Z = 4.44 [p < 0.01]; ULE = 0.57 [95% CI 0.24, 0.89], Z = 3.44 [p = 0.0006]), there was no difference between the effect of BLE and ULE on movement speed (0.17 [95% CI - 0.15, 0.50], Z = 1.03 [p = 0.30]). For BLE, combined strength and plyometric training had the largest effect size (0.88 [95% CI 0.40, 1.36]]) followed by plyometric training (0.55 [95% CI 0.09, 1.01]), with the lowest effect in strength training (0.42 [95% CI - 0.02, 0.86]). For ULE, the largest effect size for training type was in plyometric training (0.78 [95% CI 0.33, 1.24]) closely followed by combined (0.63 [95% CI 0.03, 1.24]) with strength (0.29 [95% CI - 0.42, 1.01]) having a substantially lower effect size. CONCLUSIONS Both BLE and ULE are effective in enhancing horizontal movement performance. However, contrary to popular opinion, supported by the concept of training specificity, ULE was no more effective at achieving this than BLE.
Collapse
Affiliation(s)
- Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, UK.
| | | | - Bernard Liew
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, UK
| | - Helmi Chaabene
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
- High Institute of Sports and Physical Education, Kef, University of Jendouba, Jendouba, Tunisia
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Canada
| | - Antonio García-Hermoso
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- Laboratorio de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | - Mikel Izquierdo
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- Grupo GICAEDS. Programa de Cultura, Física, Deporte y Recreación, Universidad Santo Tomás, Bogotá, Colombia
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| |
Collapse
|
7
|
Similar performance fatigability and neuromuscular responses following sustained bilateral tasks above and below critical force. Eur J Appl Physiol 2021; 121:1111-1124. [PMID: 33484333 DOI: 10.1007/s00421-020-04588-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The present study examined the magnitude of performance fatigability as well as the associated limb- and intensity-specific neuromuscular patterns of responses during sustained, bilateral, isometric, leg extensions above and below critical force (CF). METHODS Twelve women completed three sustained leg extensions (1 below and 2 above CF) anchored to forces corresponding to RPE = 1, 5, and 8 (10-point scale). During each sustained leg extension, electromyographic (EMG) and mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF) were assessed from each vastus lateralis in 5% of time-to-exhaustion (TTE) segments. Before and after each sustained leg extension, the subjects completed maximal voluntary isometric contractions (MVIC), and the percent decline was defined as performance fatigability. Polynomial regression was used to define the individual and composite neuromuscular and force values versus time relationships. Repeated-measures ANOVAs assessed differences in performance fatigability and TTE. RESULTS The grand mean for performance fatigability was 10.1 ± 7.6%. For TTE, the repeated-measures ANOVA indicated that there was a significant (p < 0.05) effect for Intensity, such that RPE = 1 > 5 > 8. There were similar neuromuscular patterns of response between limbs as well as above and below CF. EMG MPF, however, exhibited decreases only above CF. CONCLUSIONS Performance fatigability was unvarying above and below CF as well as between limbs. In addition, there were similar fatigue-induced motor unit activation strategies above and below CF, but peripheral fatigue likely contributed to a greater extent above CF.
Collapse
|