1
|
Wang YL, Yang YL, Tan X, Li X, Zhao L. Enhanced nutrients removal from low C/N ratio rural sewage by embedding heterotrophic nitrifying bacteria and activated alumina in a tidal flow constructed wetland. BIORESOURCE TECHNOLOGY 2024; 413:131513. [PMID: 39313009 DOI: 10.1016/j.biortech.2024.131513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Rural sewage treatment facilitates nitrogen and phosphorus removal yet can be costly. To address this challenge, a cost-effective embedding material mainly consisting of heterotrophic nitrifying bacteria, activated alumina (AA), and a solid carbon source (HPMC) was applied to a tidal flow constructed wetlands (TFCWs); aimed at stable nitrogen and phosphorus removal under low carbon-to-nitrogen (C/N) ratios. The TFCWs could be shortened to 16 d of startup duration time compared with the control group; and improved the ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) removal efficiencies to 98 %, 93 %, and 68 %, respectively. Also, effluent NH4+-N, TN, and TP in the enhanced TFCWs could be stable at 0.52 ± 0.18, 1.23 ± 0.45, and 0.75 ± 0.25 mg/L, respectively. Microbial community analysis revealed that AA and HPMC were enriched Pseudomonas sp., which potentially accelerated the NH4+-N assimilation pathway and phosphate biological removal. Embedding materials-TFCWs can provide new solutions for integrated rural sewage technology.
Collapse
Affiliation(s)
- Yan-Lin Wang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yan-Ling Yang
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xu Tan
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China; China Architecture Design and Research Group, Beijing 100044, PR China.
| | - Xing Li
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Li Zhao
- China Architecture Design and Research Group, Beijing 100044, PR China.
| |
Collapse
|
2
|
Zhao F, Zhang X, Xu Z, Feng C, Pan W, Lu L, Luo W. Review of hydraulic conditions optimization for constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122377. [PMID: 39243655 DOI: 10.1016/j.jenvman.2024.122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Hydraulic conditions exert a comprehensive and vital influence on constructed wetlands (CWs). However, research on this subject is relatively limited. Hydraulic parameters can be categorized into design and operational parameters based on their properties. The design parameters are represented by the hydraulic gradient, substrate porosity, and aspect ratio, while operational parameters are represented by the hydraulic retention time, hydraulic loading rate, and water depth. These parameters directly or indirectly affect the operational lifespan and pollutant removal performance of CWs. Currently, the primary measures for optimizing the hydraulic conditions of CWs involve hydraulic structure and numerical simulation optimization methods. In this review, we aimed to elucidate the impact of hydraulic conditions on CW performance and summarize current optimization strategies. By highlighting the significance of hydraulic parameters in enhancing pollutant removal and extending operational lifespan, this review provides valuable insights for improving CW design and management. The findings will be useful for researchers and practitioners seeking to optimize CW systems and advance the application of nature-based solutions for wastewater treatment.
Collapse
Affiliation(s)
- Fangxing Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Chengye Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Weiyan Pan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Le Lu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Wancheng Luo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
3
|
Zhang J, Yu X, Ding S, Zou Y. Lignite-steel slag constructed wetland with multi-functionality and effluent reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120183. [PMID: 38290262 DOI: 10.1016/j.jenvman.2024.120183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/17/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Constructed wetlands (CWs) are widely used to treat wastewater, while innovative studies are needed to support resource conservation, enhance multi-functionality, and improve the effectiveness of effluent usage. This study assessed the potential of CW's multiple functions by combining low-rank coal (lignite) and industrial waste (steel slag) in different configurations as CW substrates. The results of scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and metagenomic sequencing showed that the experimental treatment with lignite and steel slag mixtures had the highest multi-functionality, including efficient nutrient removal and carbon sequestration, as well as hydroponic crop production. Lignite and steel slag were mixed to form lignite-steel slag particle clusters, where Ca2+ dissolved on the surface of steel slag was combined with PO43- in wastewater to form Ca3(PO4)2 precipitation for phosphorus removal. A biofilm grew on the surface of lignite in this cluster, and OH- released from steel slag promoted lignite to release fulvic acid, which provided a carbon source for heterotrophic microorganisms and promoted denitrification. Moreover, fulvic acid enhanced carbon sequestration in CWs by increasing the biomass of Phragmites australis. The effluent from lignite-steel slag CW increased cherry tomato yield and quality while saving N and P applications. These results provide new ideas for the "green" and economic development of CW technology.
Collapse
Affiliation(s)
- Jingyao Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education & State Environmental Protection Key Laboratory for Wetland Conservation and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Ministry of Education & Key Laboratory of Geographical Processes and Ecological Security ofChangbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Xiaofei Yu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education & State Environmental Protection Key Laboratory for Wetland Conservation and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Ministry of Education & Key Laboratory of Geographical Processes and Ecological Security ofChangbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China; Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station & Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China.
| | - Shanshan Ding
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education & State Environmental Protection Key Laboratory for Wetland Conservation and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology of Ministry of Education & Key Laboratory of Geographical Processes and Ecological Security ofChangbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yuanchun Zou
- Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station & Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| |
Collapse
|
4
|
Wei J, Cotterill S, Keenahan J. Optimizing the hydraulic performance of a baffled horizontal subsurface flow constructed wetland through computational fluid dynamics modelling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119776. [PMID: 38086121 DOI: 10.1016/j.jenvman.2023.119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Baffled constructed wetlands (CWs) offer a promising solution to address low hydraulic efficiency in traditional CWs. However, there is a research gap in the field regarding the optimal length and quantity of baffles, and their comprehensive effects on hydraulic efficiency. This study is the first CFD-based assessment to comprehensively investigate the combined influence of baffle length and the number of baffles on the hydraulic efficiency of CWs. Using OpenFOAM simulations at a laboratory scale, various baffle configurations were examined with lengths ranging from 0.4 m to 0.58 m and baffle numbers varying from 0 to 11. Experimental tracer tests were conducted to validate the simulations. The high correlation coefficient (R2) between the tracer test results and simulations (ranging between 0.84 and 0.93) further underscores the reliability of the findings. Residence time distributions (RTDs) were derived from the temporal evolution of the outlet concentration of a tracer. The results indicate that augmenting the number of baffles under a fixed baffle length has a greater impact on the RTD curves, causing a backward displacement of the peak time. However, when the number of baffles is three or fewer, extending the baffle length does not significantly affect the RTD. When the baffle length is held constant at 0.58 m, there is a 58% enhancement in hydraulic efficiency as the number of baffles increases from 0 to 5. However, when maintaining a constant number of 11 baffles, increasing the baffle length from 0.4 to 0.5 m results in only a 5.5% improvement in hydraulic efficiency. Moreover, a generalized predictive equation for hydraulic efficiency was derived based on the CFD results and dimensional analysis. The study enhances the optimization of constructed wetland design by providing greater understanding of hydrodynamic behavior, leading to improved performance and applicability in practical environmental engineering.
Collapse
Affiliation(s)
- Jiahao Wei
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Newstead Building, Dublin 4, Ireland.
| | - Sarah Cotterill
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Newstead Building, Dublin 4, Ireland.
| | - Jennifer Keenahan
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Newstead Building, Dublin 4, Ireland.
| |
Collapse
|
5
|
Wang R, Xu L, Xu X, Xu Z, Zhang X, Cong X, Tong K. Hydraulic characteristics of small-scale constructed wetland based on residence time distribution. ENVIRONMENTAL TECHNOLOGY 2023; 44:1061-1070. [PMID: 34651547 DOI: 10.1080/09593330.2021.1994018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
This paper designs and builds a small constructed wetland test site to study the internal hydraulic characteristics of different types of constructed wetlands, conducts NaCl pulse tracing experiments, and fits the residence time distribution (RTD) with the CSTRs+PFD model (Continuous Stirred-Tank Reactor model in parallel with Plug Flow with Dispersion model). The results showed that, among the six types of constructed wetlands, hydraulic parameters of horizontal subsurface flow constructed wetlands with baffles had the best performance, with a tracer recovery rate (F(t)) reaching 43.67% and hydraulic efficiency (λ) reaching 0.81. The addition of baffles slowed flow velocity, increased mean hydraulic retention time (Tm) and peak residence time (Tp), and reduced the short circuits phenomenon. The velocity of internal water flow increased during the horizontal and vertical deflections, which could well avoid the stagnation phenomenon caused by complicated flow state, thereby improving the hydraulic efficiency (λ). The CSTRs+PFD model can better fit the RTD of 6 different types of constructed wetlands. The peak value of the fitted curve, the time to reach the peak and the slope of the curve are all very similar to the measured RTD.
Collapse
Affiliation(s)
- Rongzhen Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Lirong Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Xiangxi Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Xin Cong
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| | - Kai Tong
- School of Water Conservancy and Environment, University of Jinan, Jinan, People's Republic of China
| |
Collapse
|
6
|
Shukla A, Patwa A, Parde D, Vijay R. A review on generation, characterization, containment, transport and treatment of fecal sludge and septage with resource recovery-oriented sanitation. ENVIRONMENTAL RESEARCH 2023; 216:114389. [PMID: 36152889 DOI: 10.1016/j.envres.2022.114389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Fecal sludge and septage (FSS) are more concentrated than domestic wastewater which makes it difficult to treat and requires immediate attention otherwise, it leads towards serious environmental problems. In this review, an attempt has been made to highlight and discuss the various aspects of fecal sludge and septage management (FSSM) like its generation, characterization, containment, transportation, treatment, reuse and disposal. A comparison of existing fecal sludge treatment plants and technologies has been reviewed considering land requirement, capital cost, operation and maintenance cost, advantages and disadvantages. Based on the existing practices and review, a techno-economic treatment scheme is designed and proposed for solid-liquid separation and treatment of FSS with resource-recovery as fertilizer, material for construction, energy and treated effluent. To make FSSM, self-sustainable, a revenue generation model is also delineated for the researchers and decision-makers to evaluate its feasibility and implementation, especially in developing and underdeveloped countries.
Collapse
Affiliation(s)
- Amol Shukla
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India.
| | - Aakash Patwa
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India.
| | - Divyesh Parde
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India.
| | - Ritesh Vijay
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India.
| |
Collapse
|
7
|
Couto E, Assemany PP, Assis Carneiro GC, Ferreira Soares DC. The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: a review. CHEMOSPHERE 2022; 302:134808. [PMID: 35508259 DOI: 10.1016/j.chemosphere.2022.134808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 04/02/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The presence of emerging contaminants, such as pharmaceuticals and personal care products (PPCPs), in aquatic environments has received increasing attention in the last years due to the various possible impacts on the dynamics of the natural environment and human health. In global terms, around 771 active pharmaceutical substances or their transformation products have been detected at levels above their respective detection limit. Additionally, 528 different compounds have been detected in 159 countries. Seeking to overcome potential ecotoxicological problems, several studies have been conducted using different technologies for PPCPs removal. Recently, the use of macro, microalgae, and aquatic macrophytes has been highlighted due to the excellent bioremediation capacity of these organisms and easy acclimatization. Thus, the present review aims to outline a brief and well-oriented scenario concerning the knowledge about the bioremediation alternatives of PPCPs through the use of macro, microalgae, and aquatic macrophytes. The characteristics of PPCPs and the risks of these compounds to the environment and human health are also addressed. Moreover, the review indicates the opportunities and challenges for expanding the use of biotechnologies based on algae and aquatic macrophytes, such as studies dedicated to relate the operational criteria of these biotechnologies with the main PPCPs removal mechanisms. Finally, algae and macrophytes can compose green and ecological biotechnologies for wastewater treatment, having great contribution to PPCPs removal.
Collapse
Affiliation(s)
- Eduardo Couto
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil.
| | - Paula Peixoto Assemany
- Federal University of Lavras, Environmental Engineering Department, Campus Universitário, Lavras, Minas Gerais, Brazil
| | - Grazielle Cristina Assis Carneiro
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil
| | - Daniel Cristian Ferreira Soares
- Federal University of Itajuba, Institute of Pure and Applied Sciences, Campus Itabira. Rua Irmã Ivone Drumond, 200 Itabira, Minas Gerais, Brazil
| |
Collapse
|
8
|
Patyal V, Jaspal D, Khare K. Materials in constructed wetlands for wastewater remediation: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2853-2872. [PMID: 34595802 DOI: 10.1002/wer.1648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The wastewater treatment industry is constantly evolving to abate emerging contaminants and to meet stringent legislative requirements. The existing technologies need to be modified, or new innovative treatment techniques need to be developed to ensure environmental protection and secure sustainability in the future. Emphasis is mainly on nutrient recovery, energy-efficient systems, zero waste generation, and environmentally friendly techniques. Constructed wetlands (CWs) have evolved as natural, eco-friendly, economical, and low-maintenance alternatives for wastewater remediation. These wetlands employ several materials as adsorbents for the treatment, commonly known as media/substrate. This review paper presents an assessment of various materials that can be used as substrates in CWs for the efficient removal of organic and non-biodegradable pollutants in different types of wastewaters. The effect of pH, mineral composition, specific surface area, and porosity of various natural materials and agricultural and industrial wastes used as media in CWs for wastewater remediation was discussed. The study showed that different substrates like alum sludge, limestone, coal slags, rice husk, and sand had removal efficiency for chemical oxygen demand (COD): 71.8%-82%, total phosphorous (TP): 77%-80%, and total nitrogen (TN): 52%-82% for different types of wastewaters. It also highlights the challenges related to the long-term sustainability of these materials. PRACTITIONER POINTS: Physicochemical characteristics influence the removal efficiency of the materials Life of media is also important along with removal efficiency and cost The sustainability of materials is very crucial for the overall performance of the system.
Collapse
Affiliation(s)
- Vandana Patyal
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Dipika Jaspal
- Department of Applied Science, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| | - Kanchan Khare
- Department of Civil Engineering, Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University) (SIU), Pune, India
| |
Collapse
|
9
|
Wang R, Xu L, Xu X, Xu Z, Cong X. Simulation and optimization of hydraulic performance of small baffled subsurface flow constructed wetland. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:632-643. [PMID: 34388123 DOI: 10.2166/wst.2021.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The water body inside the constructed wetland is affected by various factors, and the flow state is relatively complicated. There will always be a certain degree of low velocity area and rapid outflow phenomenon, which makes part of the space in the wetland unable to be effectively used. Based on Computational Fluid Dynamics (CFD) technology, this paper uses Fluent's porous media model and discrete phase model to establish a hydrodynamic model of up and down baffled subsurface flow constructed wetland system. The internal flow field of the wetland is simulated, and the hydraulic performance of different baffle settings and substrate laying methods in the wetland is systematically evaluated. The results show that when the number of baffles is the same, the hydraulic efficiency is higher when the first baffle is located on the lower part of the substrate. Compared with the position of the baffle, the increase in the number of baffles does not significantly improve the hydraulic efficiency of the constructed wetland. The substrate layer thickness ratio has a significant effect on the two parameters of the variance of the hydraulic residence time distribution (σ2) and the flow divergence (σ02). By increasing the thickness of the middle substrate, the low flow rate phenomenon caused by the small porosity substrate area of the upper layer and the rapid outflow phenomenon of the lower substrate can be improved to a certain extent, the utilization efficiency of the middle substrate layer is improved, and the hydraulic performance is increased. The research results are of great significance for improving the utilization of wetland space and ensuring its efficient decontamination and purification function.
Collapse
Affiliation(s)
- Rongzhen Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Lirong Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Xiangxi Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| | - Xin Cong
- School of Water Conservancy and Environment, University of Jinan, Jinan, China
| |
Collapse
|
10
|
Ouyang Y. A flow-weighted approach to generate daily total phosphorus loads in streams based on seasonal loads. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:422. [PMID: 34129110 DOI: 10.1007/s10661-021-09199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus (P) is an essential nutrient for all forms of life but its over-enrichment can result in eutrophication of surface waters. For many watersheds around the world, some seasonal total P (TP) load datasets may exist but the continuous and multi-year daily TP concentrations and/or load datasets are not available due to the lacks of in situ P sensor measurement, time-consuming, and budget constraint. Traditionally, the seasonal TP loads are normally obtained with measuring daily TP concentrations for a couple of times within a season in a watershed, and then these daily TP concentrations along with their respective daily discharges are used to calculate the seasonal TP loads for the watershed. However, without the continuous and multi-year daily TP load dataset, development of total maximum daily load (TMDL) and calibration of watershed models for TP cannot be achieved. A flow-weighted method was developed (with detailed procedures) here to generate the daily TP loads based on the seasonal loads. The method was rigorously validated using the measured daily TP datasets from three different US Geological Survey gage stations. With very good statistical comparisons between the method predicted and field measured TP loads, we demonstrated that the flow-weighted method herein is a useful tool to disaggregate the seasonal TP loads into the daily TP loads when the measured daily TP data are not available while the TMDL development and model calibrations/validations are inevitable.
Collapse
Affiliation(s)
- Ying Ouyang
- Center for Bottomland Hardwoods Research, Southern Research Station, USDA Forest Service, 775 Stone Blvd., Thompson Hall, Room 309, Mississippi State, MS, 39762, USA.
| |
Collapse
|
11
|
Saeed T, Hossain N. Organics and nutrients removal in vertical flow wetlands: loading fluctuation and alternative media. ENVIRONMENTAL TECHNOLOGY 2021; 42:1104-1118. [PMID: 31401944 DOI: 10.1080/09593330.2019.1655592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Two wetland systems (conventional and structurally modified) were studied for the removal of organics and nutrients from municipal wastewater. Each system consisted of three vertical flow (VF) wetlands, which were filled with agricultural, construction waste materials and planted with Phragmites australis and Canna indica. The wetland units were operated under constant and consecutive shock hydraulic load (HL). Input nutrients and organics load across the wetland units ranged between 4.0-116.0 g N/m2d, 0.5-23.0 g P/m2d, 1.0-527.0 g biochemical oxygen demand (BOD)/m2d and 16.0-686.0 g chemical oxygen demand (COD)/m2d. Nitrification and organic carbon availability controlled nitrogen (N) removals in first and third stage VF wetlands, respectively, during constant load phase; organics removals were influenced by dissolved oxygen concentration of municipal wastewater. Second stage VF wetlands (of both systems) were inefficient in terms of COD removals during shock load periods, which were counter-balanced by first and third stages. First stage VF wetlands achieved higher N removal rates than following stages during shock load periods. Wetland maturation provided a buffer against substantial HL increment and sharp input load decrease in latter shock and recovery phases, respectively. Agricultural waste (sugarcane bagasse) provided carbon to support denitrification; construction materials (recycled brick and crushed mortar) removed phosphorus (P) from wastewater through adsorption. Coliform removal in VF wetlands was achieved through media filtration. Structurally modified system achieved higher removals than the conventional system. BOD, COD, total nitrogen and NH4-N removal percentage across two systems ranged between 76-79%, 59-63%, 73-77% and 90-95%, respectively. In general, this study enlightens potential application of appropriate waste materials for wastewater treatment.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh
| | - Nadim Hossain
- Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh
| |
Collapse
|
12
|
Saeed T, Yasmin N, Sun G, Hasnat A. The use of biochar and crushed mortar in treatment wetlands to enhance the removal of nutrients from sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:586-599. [PMID: 30411289 DOI: 10.1007/s11356-018-3637-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
An experimental study was carried out using in pilot-scale constructed wetland systems, operated in parallel to treat raw sewage. Each system consisted of a vertical flow (VF) unit that was filled with biochar as the main media, followed by a horizontal flow (HF) unit filled with crushed cement mortar. Hydraulic loading (HL) ranged 340-680 mm/day was applied on the VF wetland units, where high total nitrogen (TN) mass removal rate (20-23 g N/m2 d) was obtained, demonstrating that biochar media had a beneficial effect on the degradation of nitrogenous pollutants. Total phosphorus (TP) removal percentage (concentration based) was ≥ 86% in HF wetlands packed with mortar materials. In one system, the flow direction of the sewage was directed by the deployment of downflow pipes and vertical baffles, aiming to facilitate the formation of aerobic and anaerobic zones in the wetland matrices. The effects of such arrangement were analyzed by comparing pollutant removal efficiencies in the two systems. On average, 99, 96, 93, and 86 percentage removals were obtained for ammonia (NH4-N), TN, biochemical oxygen demand (BOD), and TP, respectively, during the experiments. Biochar and crushed mortar proved to be a highly effective combination as media in subsurface flow constructed wetlands for wastewater treatment.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh.
| | - Nilufar Yasmin
- Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh
| | - Guangzhi Sun
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Ariful Hasnat
- Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh
| |
Collapse
|
13
|
Lima MX, Carvalho KQ, Passig FH, Borges AC, Filippe TC, Azevedo JCR, Nagalli A. Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1365-1373. [PMID: 29554756 DOI: 10.1016/j.scitotenv.2018.02.342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to assess removal potential of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), total ammonia nitrogen (TAN), total phosphorus (TP) and acetylsalicylic acid (ASA) in synthetic wastewater simulating low-strength sewage by sequencing-batch mode constructed wetlands (CWs). Six CWs with three substrates (gravel, light expanded clay and clay bricks) and one CW of each substrate was planted with E. crassipes to verify the feasibility of using a floating macrophyte in CWs and verify the best optimized substrate. Results showed that the presence of E. crassipes enhanced the removal of COD for systems with gravel, increasing the removal efficiency from 37% in the unplanted system (CWG-U) to 60% in the planted system (CWG-P). The vegetated CW with clay bricks (CWB-P) presented the best performance for both TKN and TAN removal, with maximum removal efficiencies of 68% and 35%, respectively. Phosphorus was observed to be efficiently removed in systems with clay bricks, both planted (CWB-U) and unplanted (CWB-P), with mean removal efficiencies of 82% and 87%, respectively, probably via adsorption. It was also observed that after 296days of operation, no desorption or increase on phosphorus in effluent samples were observed, thus indicating that the material was not yet saturated and phosphorus probably presents a strong binding to the media. ASA removal efficiency varied from 34% to 92% in CWs, probably due to plant uptake through roots and microbial biodegradation. Plant direct uptake varied from 4 to 74% of the total nitrogen and from 26 to 71% of the total phosphorus removed in CWG-P, CWC-P and CWB-P. E. crassipes was able to uptake up to 4.19g of phosphorus in CWC-P and 11.84g of nitrogen in CWB-P. The findings on this study suggest that E. crassipes could be used in CWs and clay bricks could significantly enhance phosphorus removal capacity in CWs.
Collapse
Affiliation(s)
- M X Lima
- The Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - K Q Carvalho
- The Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - F H Passig
- The Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - A C Borges
- Federal University of Viçosa, Department of Agricultural Engineering, PH Rolfs Ave s/n, 36570-000 Viçosa, Minas Gerais, Brazil.
| | - T C Filippe
- The Federal University of Technology - Paraná (UTFPR), Environmental Sciences and Technology Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil
| | - J C R Azevedo
- The Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - A Nagalli
- The Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| |
Collapse
|
14
|
Jesus JM, Danko AS, Fiúza A, Borges MT. Effect of plants in constructed wetlands for organic carbon and nutrient removal: a review of experimental factors contributing to higher impact and suggestions for future guidelines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4149-4164. [PMID: 29250733 DOI: 10.1007/s11356-017-0982-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Constructed wetland is a proven technology for water pollution removal, but process mechanisms and their respective contribution are not fully understood. The present review details the effect of plants on removal efficiency of constructed wetlands by focusing on literature that includes experiments with unplanted controls for organic carbon and nutrient (N and P) removal. The contribution of plant direct uptake is also assessed. Although it was found that several studies, mostly at laboratory or pilot scales, showed no statistical differences between planted and unplanted controls, some factors were found that help maximize the effect of plants. This study intends to contribute to a better understanding of the significance of the effect of plants in a constructed wetland, as well as to suggest a set of experimental guidelines in this field.
Collapse
Affiliation(s)
- João M Jesus
- Centre for Natural Resources and the Environment (CERENA), Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Anthony S Danko
- Centre for Natural Resources and the Environment (CERENA), Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - António Fiúza
- Centre for Natural Resources and the Environment (CERENA), Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal
| | - Maria-Teresa Borges
- Biology Department, Science Faculty, Porto University (FCUP), Rua Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
15
|
|
16
|
Bustillo-Lecompte CF, Mehrvar M, Quiñones-Bolaños E, Castro-Faccetti CF. Modeling organic matter and nitrogen removal from domestic wastewater in a pilot-scale vertical subsurface flow constructed wetland. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:414-424. [PMID: 26818608 DOI: 10.1080/10934529.2015.1120528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Constructed wetlands have become an attractive alternative for wastewater treatment. However, there is not a globally accepted mathematical model to predict their performance. In this study, the VS2DTI software was used to predict the effluent biochemical oxygen demand (BOD) and total nitrogen (TN) in a pilot-scale vertical flow constructed wetland (VFCW) treating domestic wastewater. After a 5-week adaptation period, the pilot system was monitored for another 6 weeks. Experiments were conducted at hydraulic retention times (HRTs) in the range of 2-4 days with Typha latifolia as the vegetation. The raw wastewater concentrations ranged between 144-430 and 122-283 mg L(-1) for BOD5 and TN, respectively. A first-order kinetic model coupled with the advection/dispersion and Richards' equations was proposed to predict the removal rates of BOD5 and TN from domestic wastewater. Two main physical processes were modeled in this study, porous material water flow and solute transport through the different layers of the VFCW to simulate the constructed wetland (CW) conditions. The model was calibrated based on the BOD5 and TN degradation constants. The model indicated that most of BOD and TN (88 and 92%, respectively) were removed through biological activity followed by adsorption. It was also observed that the evapotranspiration was seen to have a smaller impact. An additional data series of effluent BOD and TN was used for model validation. The residual analysis of the calibrated model showed a relatively random pattern, indicating a decent fit. Thus, the VS2DTI was found to be a useful tool for CW simulation.
Collapse
Affiliation(s)
| | - Mehrab Mehrvar
- b Department of Chemical Engineering , Ryerson University , Toronto , Ontario , Canada
| | | | | |
Collapse
|