1
|
Zhao XL, Qi Z, Huang H, Tu J, Song XJ, Qi KZ, Shao Y. Coexistence of antibiotic resistance genes, fecal bacteria, and potential pathogens in anthropogenically impacted water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46977-46990. [PMID: 35175529 DOI: 10.1007/s11356-022-19175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Microbial indicators are often used to monitor microbial safety of aquatic environments. However, information regarding the correlation between microbial indicators and ecotoxicological factors such as potential pathogens and antibiotic resistance genes (ARGs) in anthropogenically impacted waters remains highly limited. Here, we investigated the bacterial community composition, potential pathogens, ARGs diversity, ARG hosts, and horizontal gene transfer (HGT) potential in urban river and wastewater samples from Chaohu Lake Basin using 16S rRNA and metagenomic sequencing. The composition of the microbial community and potential pathogens differed significantly in wastewater and river water samples, and the total relative abundance of fecal indicator bacteria was positively correlated with the total relative abundance of potential pathogens (p < 0.001 and Pearson's r = 0.758). Network analysis indicated that partial ARG subtypes such as dfrE, sul2, and PmrE were significantly correlated with indicator bacteria (p < 0.05 and Pearson's r > 0.6). Notably, Klebsiella was the indicator bacteria significantly correlated with 4 potential pathogens and 14 ARG subtypes. ARGs coexisting with mobile gene elements were mainly found in Thauera, Pseudomonas, Escherichia, and Acinetobacter. Next-generation sequencing (NGS) can be used to conduct preliminary surveys of environmental samples to access potential health risks, thereby facilitating water resources management.
Collapse
Affiliation(s)
- Xiang-Long Zhao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, People's Republic of China
| | - Zhao Qi
- School of Information and Computer, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Hao Huang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, People's Republic of China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, People's Republic of China
| | - Xiang-Jun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, People's Republic of China
| | - Ke-Zong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, People's Republic of China.
| | - Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, People's Republic of China.
| |
Collapse
|
2
|
Hu A, Wang H, Li J, Mulla SI, Qiu Q, Tang L, Rashid A, Wu Y, Sun Q, Yu CP. Homogeneous selection drives antibiotic resistome in two adjacent sub-watersheds, China. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122820. [PMID: 32502801 DOI: 10.1016/j.jhazmat.2020.122820] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 05/12/2023]
Abstract
Rivers are a significant reservoir of antibiotic resistance genes (ARGs), yet the biogeographic pattern of riverine ARGs and its underlying driving forces remain poorly understood. Here, we used metagenomic approach to investigate the spatio-temporal variation of ARGs in two adjacent sub-watersheds viz. North River (NR) and West River (WR), China. The results demonstrated that Bacitracin (22.8 % of the total ARGs), multidrug (20.7 %), sulfonamide (15.2 %) and tetracycline (10.9 %) were the dominant ARG types. SourceTracker analysis indicated that sewage treatment plants as the main source of ARGs, while animal feces mainly contributed in spreading the ARGs in the upstream of NR. Random forest and network analyses confirmed that NR was under the influence of fecal pollution. PCoA analysis demonstrated that the composition of ARGs changed along with the anthropogenic gradients, while the Raup-Crick null model showed that homogenizing selection mediated by class 1 integron intI1 resulted in stable ARG communities at whole watershed scale. Structural equation models revealed that microbial community, grassland and several non-antibiotic micropollutants may also play certain roles in influencing the distribution of ARGs. Overall, the observed deterministic formation of ARGs in riverine systems calls effective management strategies to mitigate the risks of antibiotic resistance on public health.
Collapse
Affiliation(s)
- Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Hongjie Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Sikandar I Mulla
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Department of Biochemistry, School of Applied Sciences, Reva University, Bangalore, 560 064, India
| | - Quanyi Qiu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Lina Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar, Pakistan
| | - Yang Wu
- Department of Biology and Environmental Engineering, Hefei University, Hefei 230601, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
3
|
Zhang K, Sun D, Duan C, Chen H, Din AU, Kong X, Qin X, Zhang B. Application of a Faecalibacterium 16S rDNA genetic marker for species identification of dog fecal waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30615-30624. [PMID: 32472511 DOI: 10.1007/s11356-020-09369-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
A dog-associated 16S rDNA genetic marker (ED-1) was designed to detect dog fecal contamination in water through a comparative bioinformatics analysis of Faecalibacterium sequences. For the dog fecal samples, ED-1 had 100% specificity, a high positive rate (89% in dog feces and 92.3% in dog fecal-contaminated water samples), and a low detection limit (107 copies/100 mL) in dog-contaminated water samples. Detection of water samples from seven provinces or cities of China showed that ED-1 was stable enough to be applied in practice. Furthermore, the abundance and diversity of dog gut microbiota from two private house pets (PHP) and Third Military Medical University (TMMU) dogs were estimated by using operational taxonomic units, and the significant differences of dog feces were found, as the PHP dogs have a more diverse diet and closer contact with human than dogs in TMMU. However, ED-1 could detect the feces from the two regions, indicating that ED-1 has good reliability.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325000, China.
| | - Chuanren Duan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Hang Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Ahmad Ud Din
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiangjun Kong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, 999078, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Baoyun Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510000, China
| |
Collapse
|
4
|
Wang L, Yin G, Guo Y, Zhao Y, Zhao M, Lai Y, Sui P, Shi T, Guo W, Huang Z. Variations in Oral Microbiota Composition Are Associated With a Risk of Throat Cancer. Front Cell Infect Microbiol 2019; 9:205. [PMID: 31334130 PMCID: PMC6618584 DOI: 10.3389/fcimb.2019.00205] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, a next-generation sequencing strategy on 16S ribosomal RNA (16S rRNA) gene was employed to analyze 70 oral samples from 32 patients with throat cancer, nine patients with vocal cord polyp, and 29 healthy individuals (normal controls). Using this strategy, we demonstrated, for the first time, that the salivary microbiota of cancer patients were significantly different from those of patients with a polyp and healthy individuals. We observed that the beta diversity of the cancer group was divergent from both the normal and polyp groups, while alpha-diversity indices such as the Chao1 estimator (P = 8.1e-05), Simpson (P = 0.0045), and Shannon (P = 0.0071) were significantly reduced in cancer patients compared with patients containing a polyp and normal healthy individuals. Linear discriminant analysis (LDA) and Kruskal–Wallis test analyses and real-time quantitative polymerase chain reaction (qPCR) verification test revealed that the genera Aggregatibacter, Pseudomonas, Bacteroides, and Ruminiclostridium were significantly enriched in the throat cancer group compared with the vocal cord polyp and normal control groups (score value >2). Finally, diagnostic models based on putatively important constituent bacteria were constructed with 87.5% accuracy [area under the curve (AUC) = 0.875, 95% confidence interval (CI): 0.695–1]. In summary, in this study we characterized, for the first time, the oral microbiota of throat cancer patients without smoking history. We speculate that these results will help in the pathogenic mechanism and early diagnosis of throat cancer.
Collapse
Affiliation(s)
- Lili Wang
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Gaofei Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Guo
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Yaqi Zhao
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Meng Zhao
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Yunyun Lai
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Pengcheng Sui
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Taiping Shi
- Beijing Cheer Land Biotechnology Co., Ltd., CL Investment Group, Beijing, China
| | - Wei Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Flores-Félix JD, Sánchez-Juanes F, García-Fraile P, Valverde A, Mateos PF, Gónzalez-Buitrago JM, Velázquez E, Rivas R. Phaseolus vulgaris is nodulated by the symbiovar viciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Syst Appl Microbiol 2019; 42:240-247. [DOI: 10.1016/j.syapm.2018.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 11/30/2022]
|