1
|
Trukhin A, Kalinchuk V, Rumiantseva O, Zolotukhin S. Mercury and stable nitrogen isotope ratios in the hair of bearded seals (Erignathus barbatus nauticus) from the Sea of Okhotsk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56645-56659. [PMID: 39285112 DOI: 10.1007/s11356-024-34677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 08/06/2024] [Indexed: 09/25/2024]
Abstract
The mercury pollution status in the northwestern Sea of Okhotsk remains largely unexplored. In this study, hair samples were collected from 40 bearded seals harvested between August and October 2021 in the region. Total mercury (THg) concentrations in the samples exhibited a wide range from 137 to 1885 ng/g (median: 407 ng/g). While no significant differences in THg concentrations were found between male and female seals, distinctions were observed between young and potentially mature seals. Stable nitrogen isotope analysis indicated that juveniles and mature adults did not differ, although sample sizes were limiting. The higher THg concentrations in juveniles were attributed to variations in the seals' diets and/or variations in foraging locations during the juvenile stage which likely contribute to THg differences due to greater seasonal migration to offshore habitats. Notably, THg levels in bearded seals from the northwestern Sea of Okhotsk were lower in comparison to other pinniped species in the North Pacific. These findings, representing the first dataset for this pinniped species in the Russian segment of its habitat, contribute insights into mercury exposure in the Sea of Okhotsk mammalian population.
Collapse
Affiliation(s)
- Alexey Trukhin
- V.I. Il'ichev Pacific Oceanological Institute of Far Eastern Branch of Russian Academy of Sciences, 43 Baltiyskaya Str, Vladivostok, 690041, Russia.
| | - Viktor Kalinchuk
- V.I. Il'ichev Pacific Oceanological Institute of Far Eastern Branch of Russian Academy of Sciences, 43 Baltiyskaya Str, Vladivostok, 690041, Russia
| | - Olga Rumiantseva
- Cherepovets State University, 5 Lunacharskogo Ave, Cherepovets, 162600, Russia
| | | |
Collapse
|
2
|
Zeng S, Wang X, Yuan W, Luo J, Wang D. Mercury accumulation and dynamics in montane forests along an elevation gradient in Southwest China. J Environ Sci (China) 2022; 119:1-10. [PMID: 35934454 DOI: 10.1016/j.jes.2021.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 06/15/2023]
Abstract
Understanding atmospheric mercury (Hg) accumulation in remote montane forests is critical to assess the Hg ecological risk to wildlife and human health. To quantify impacts of vegetation, climatic and topographic factors on Hg accumulation in montane forests, we assessed the Hg distribution and stoichiometric relations among Hg, carbon (C), and nitrogen (N) in four forest types along the elevation of Mt. Gongga. Our results show that Hg concentration in plant tissues follows the descending order of litter > leaf, bark > root > branch > bole wood, indicating the importance of atmospheric Hg uptake by foliage for Hg accumulation in plants. The foliar Hg/C (from 237.0 ± 171.4 to 56.8 ± 27.7 µg/kg) and Hg/N (from 7.5 ± 3.9 to 2.5 ± 1.2 mg/kg) both decrease along the elevation. These elevation gradients are caused by the heterogeneity of vegetation uptake of atmospheric Hg and the variation of atmospheric Hg° concentrations at different altitudes. Organic soil Hg accumulation is controlled by forest types, topographic and climatic factors, with the highest concentration in the mixed forest (244.9 ± 55.7 µg/kg) and the lowest value in the alpine forest (151.9 ± 44.5 µg/kg). Further analysis suggests that soil Hg is positively correlated to C (r2 = 0.66) and N (r2 = 0.57), and Hg/C and Hg/N both increase with the soil depth. These stoichiometric relations highlight the combined effects from environmental and climatic factors which mediating legacy Hg accumulation and selective Hg absorption during processes of organic soil mineralization.
Collapse
Affiliation(s)
- Shufang Zeng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ji Luo
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Conservancy, Chengdu 610041, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Ma H, Cheng H, Guo F, Zhang L, Tang S, Yang Z, Peng M. Distribution of mercury in foliage, litter and soil profiles in forests of the Qinling Mountains, China. ENVIRONMENTAL RESEARCH 2022; 211:113017. [PMID: 35217011 DOI: 10.1016/j.envres.2022.113017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Forest ecosystems have been confirmed to be a sink of the global mercury (Hg) in the biogeochemical cycle. However, few studies have investigated the distribution of Hg in forest ecosystems on a regional scale in China. This work aimed to investigate the concentrations, distribution and influential factors of Hg in the Qinling Mountains forests in central China. Foliage, litter and soil profile samples were collected at 24 sampling sites across the Qinling Mountains forests. The results of the present study showed that the concentrations of Hg in foliage, litter, organic soils and mineral soils were maintained at relatively low levels compared with those in subtropical forests of Southwest China. The average Hg concentrations followed the order litter (74 ± 34 ng g-1) > organic soil (71 ± 37 ng g-1) > mineral soil (34 ± 21 ng g-1) > foliage (31 ± 15 ng g-1). Mercury in foliage showed no obvious spatial pattern, likely due to differences in tree species and ages across the sampling sites. Higher concentrations of Hg in litter were observed on the southern slope (low altitude), while the distribution of Hg in organic soils was the opposite. Both the tree species and environmental parameters (altitude, temperature and precipitation) controlled the Hg concentrations in litter by regulating the decomposition rate of the litter. There were significantly positive correlations between the Hg concentrations and soil organic carbon, nitrogen and sulfur in all soil layers, indicating that organic matter has a high geochemical affinity for Hg in soils. Because of the lower turnover rate and the higher accumulation of organic matter in high altitude and low temperature areas, Hg loss from biogeochemical cycling processes was effectively reduced. The spatial distribution of Hg in forests soil can be shaped by the distribution of organic matter at the regional scale.
Collapse
Affiliation(s)
- Honghong Ma
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Hangxin Cheng
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China.
| | - Fei Guo
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Li Zhang
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Shiqi Tang
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Zheng Yang
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| | - Min Peng
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy Geological Sciences, Langfang, 065000, China; Geochemical Research Center of Soil Quality, China Geological Survey, Langfang, 065000, China
| |
Collapse
|
4
|
Xia S, Yuan W, Lin L, Yang X, Feng X, Li X, Liu X, Chen P, Zeng S, Wang D, Su Q, Wang X. Latitudinal gradient for mercury accumulation and isotopic evidence for post-depositional processes among three tropical forests in Southwest China. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128295. [PMID: 35074747 DOI: 10.1016/j.jhazmat.2022.128295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Tropical forest contributes to > 50% of global litterfall mercury (Hg) inputs and surface soil Hg storage, while with limited understanding of Hg biogeochemical processes. In this study, we displayed the 5-m resolution of Hg spatial distribution in three 1-ha tropical forest plots across the latitudinal gradient in Southwest China, and determined Hg isotopic signatures to understand factors driving Hg spatial distribution and sequestration processes. Our results show that tropical forest at the lowest latitude has the highest litterfall Hg input (74.95 versus 34.14-56.59 μg m-2 yr-1 at higher latitude plots), but the smallest surface soil Hg concentration (2-3 times smaller than at higher latitude sites). Hg isotopic evidence indicates that the decreasing climate mediated microbial Hg reduction in forest floor leads to the increasing Hg accumulation along the latitudinal gradient in three tropical forests. The terrain induced indirect effects by influencing litterfall Hg inputs, soil organic matters distribution and interplays between surface and deep soils drive the heterogeneity of surface soil Hg distribution within each sampling plot. Our results highlight though the elevated litterfall Hg inputs, the distinct post-depositional reductions induced Hg loss would remarkedly decrease atmospheric Hg net sink in tropical forest.
Collapse
Affiliation(s)
- Shangwen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; National Forest Ecosystem Research Station at Xishuangbanna, Mengla 666300, Yunnan, China
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666300, Yunnan, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xianming Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xu Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Peijia Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shufang Zeng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qizhao Su
- Mengla Institute of Conservation, Xishuangbanna Administration of Nature Reserves, Mengla 666300, Yunan, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
5
|
Wang B, Yuan W, Wang X, Li K, Lin CJ, Li P, Lu Z, Feng X, Sommar J. Canopy-Level Flux and Vertical Gradients of Hg 0 Stable Isotopes in Remote Evergreen Broadleaf Forest Show Year-Around Net Hg 0 Deposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5950-5959. [PMID: 35420795 DOI: 10.1021/acs.est.2c00778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Vegetation uptake represents the dominant route of Hg input to terrestrial ecosystems. However, this plant-directed sink is poorly constrained due to the challenges in measuring the net Hg0 exchange on the ecosystem scale over a long period. Particularly important is the contribution in the subtropics/tropics, where the bulk (∼70%) of the Hg0 deposition is considered to occur. Using the relaxed eddy accumulation technique, this study presents for the first time a whole ecosystem Hg0 flux record over an evergreen hardwood forest. This tower-based micrometeorological method gauged a cumulated net Hg0 flux of -41.1 μg m-2 over 16 months, suggesting that the subtropical montane forest acts as a large and continuous sink of atmospheric Hg0. The monthly net fluxes were consistently negative (-7.3 to -1.0 μg m-2 month-1) throughout the year, with the smallest absolute values occurring during the mild and dry subseason in spring, which was also the annual lowest in vegetation activity. Colocated measurements of multilevel gradients of Hg0 concentration and its stable isotopic composition support the finding of year-round Hg0 deposition. The stable Hg isotope measurements also show that in-canopy bi-directional Hg0 exchange is prevalent.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kai Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, China
| | - Zhiyun Lu
- National Forest Ecosystem Research Station at Ailaoshan, Jingdong, Yunnan 676209, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, China
| | - Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
6
|
Wang T, Yang G, Du H, Guo P, Sun T, An S, Wang D, Ma M. Migration characteristics and potential determinants of mercury in long-term decomposing litterfall of two subtropical forests. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111402. [PMID: 33068979 DOI: 10.1016/j.ecoenv.2020.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
It is of great importance to elucidate the mechanism of mercury (Hg) migration in the forest litterfall so as to clearly understand global Hg deposition. However, it is still unclear for the migration and transformation of Hg in different forest litters during long-term decomposition. Therefore, the dynamics of total Hg (THg), methylmercury (MeHg), carbon, nitrogen, microbial biomass carbon and nitrogen in the litterfall of the evergreen broadleaf (EB) and mixed broadleaf-conifer (MBC) forests, southwest China were investigated, aiming to understand the migration characteristics of Hg in the two-year decomposing litterfall. Results showed that carbon decreased, while nitrogen accumulated slightly in the process of litterfall decomposition. THg levels in the second year of the EB and MBC forests decreased by 16.9% and 11.3%, while MeHg levels reduced by 141.4% and 210.7% respectively comparing with those in the first year. The total percentage of hydrochloric acid-soluble mercury (Hg-h) and water-soluble mercury (Hg-w) had a significant impact on the migration of THg and MeHg in the two forest stands. The C/N ratio in the EB forest bore a positive correlation with THg and MeHg levels, whereas that in the MBC forest was adverse. Besides, microbial biomass C and N were positively related with THg and MeHg levels in both the EB and MBC forests. It is proposed that THg and MeHg accumulation in the second year drastically decreased probably due to finite nutritional conditions, which implies that Hg accumulation risks alleviate with degradation time.
Collapse
Affiliation(s)
- Tao Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Guang Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, Chongqing 400715, China
| | - Pan Guo
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tao Sun
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Siwei An
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Gómez-Armesto A, Méndez-López M, Pérez-Rodríguez P, Fernández-Calviño D, Arias-Estévez M, Nóvoa-Muñoz JC. Litterfall Hg deposition to an oak forest soil from southwestern Europe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 269:110858. [PMID: 32561026 DOI: 10.1016/j.jenvman.2020.110858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Litterfall constitutes one of the main vectors for mercury (Hg) transfer to forested ecosystems, so we studied the deposition of Hg through senescent vegetation (oak leaves, twigs and miscellaneous) in a deciduous forest plot of Southwest Europe dominated by Quercus robur in 2015 and 2016. Total Hg concentrations increased in the following order: bole wood (1.4 μg kg-1) < bark (8.3 μg kg-1) < twigs (12.2 μg kg-1) < miscellaneous (36.0 μg kg-1) < oak leaves (39.3 μg kg-1) < mineral soil (42.4 μg kg-1) < Oi horizons (48.7 μg kg-1) < Oe + Oa horizons (71.6 μg kg-1). Mercury accumulation rates in oak leaves during the growing season were 0.15-0.18 μg kg-1 day-1. Mercury deposition fluxes were 26 and 21 μg m-2 yr-1 for 2015 and 2016, respectively, with oak leaves being the fraction that contributed the most. Mercury determination in litterfall sorted biomass fractions lead to a more accurate estimation of the total annual Hg deposition fluxes through litterfall. Higher Hg content was obtained for organic horizons (average of 60.2 μg kg-1) than for mineral soil (mean of 42.4 μg kg-1), but the soil Hg pool was higher in the latter. The results confirmed the necessity of taking into account the Hg pool in the deeper mineral soil layers as they accumulate substantial quantities of Hg associated to organic C and Al compounds, preventing its mobilization to other compartments of the terrestrial ecosystems.
Collapse
Affiliation(s)
- A Gómez-Armesto
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Environmental Technology and Assessment Laboratory, Campus da Auga, Campus of Ourense, University of Vigo, 32004, Ourense, Spain.
| | - M Méndez-López
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Environmental Technology and Assessment Laboratory, Campus da Auga, Campus of Ourense, University of Vigo, 32004, Ourense, Spain
| | - P Pérez-Rodríguez
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Environmental Technology and Assessment Laboratory, Campus da Auga, Campus of Ourense, University of Vigo, 32004, Ourense, Spain
| | - D Fernández-Calviño
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Environmental Technology and Assessment Laboratory, Campus da Auga, Campus of Ourense, University of Vigo, 32004, Ourense, Spain
| | - M Arias-Estévez
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Environmental Technology and Assessment Laboratory, Campus da Auga, Campus of Ourense, University of Vigo, 32004, Ourense, Spain
| | - J C Nóvoa-Muñoz
- Área de Edafoloxía e Química Agrícola, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain; Environmental Technology and Assessment Laboratory, Campus da Auga, Campus of Ourense, University of Vigo, 32004, Ourense, Spain
| |
Collapse
|
8
|
Sommar J, Osterwalder S, Zhu W. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg 0). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137648. [PMID: 32182462 DOI: 10.1016/j.scitotenv.2020.137648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 05/26/2023]
Abstract
The atmosphere is the major transport pathway for distribution of mercury (Hg) globally. Gaseous elemental mercury (GEM, hereafter Hg0) is the predominant form in both anthropogenic and natural emissions. Evaluation of the efficacy of reductions in emissions set by the UN's Minamata Convention (UN-MC) is critically dependent on the knowledge of the dynamics of the global Hg cycle. Of these dynamics including e.g. red-ox reactions, methylation-demethylation and dry-wet deposition, poorly constrained atmosphere-surface Hg0 fluxes especially limit predictability of the timescales of its global biogeochemical cycle. This review focuses on Hg0 flux field observational studies, namely the theory, applications, strengths, and limitations of the various experimental methodologies applied to gauge the exchange flux and decipher active sub-processes. We present an in-depth review, a comprehensive literature synthesis, and methodological and instrumentation advances for terrestrial and marine Hg0 flux studies in recent years. In particular, we outline the theory of a wide range of measurement techniques and detail the operational protocols. Today, the most frequently used measurement techniques to determine the net Hg0 flux (>95% of the published flux data) are dynamic flux chambers for small-scale and micrometeorological approaches for large-scale measurements. Furthermore, top-down approaches based on Hg0 concentration measurements have been applied as tools to better constrain Hg emissions as an independent way to e.g. challenge emission inventories. This review is an up-dated, thoroughly revised edition of Sommar et al. 2013 (DOI: 10.1080/10643389.2012.671733). To the tabulation of >100 cited flux studies 1988-2009 given in the former publication, we have here listed corresponding studies published during the last decade with a few exceptions (2008-2019). During that decade, Hg stable isotope ratios of samples involved in atmosphere-terrestrial interaction is at hand and provide in combination with concentration and/or flux measurements novel constraints to quantitatively and qualitatively assess the bi-directional Hg0 flux. Recent efforts in the development of relaxed eddy accumulation and eddy covariance Hg0 flux methods bear the potential to facilitate long-term, ecosystem-scale flux measurements to reduce the prevailing large uncertainties in Hg0 flux estimates. Standardization of methods for Hg0 flux measurements is crucial to investigate how land-use change and how climate warming impact ecosystem-specific Hg0 sink-source characteristics and to validate frequently applied model parameterizations describing the regional and global scale Hg cycle.
Collapse
Affiliation(s)
- Jonas Sommar
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
9
|
Yang B, Gao Y, Zhang C, Han J, Liu Y, Zheng X. Potato (Solanum tuberosum L.) can be grown safety on human consumption in slight Hg-contaminated soils across China mainland. Sci Rep 2020; 10:8351. [PMID: 32433494 PMCID: PMC7239881 DOI: 10.1038/s41598-020-65430-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/21/2020] [Indexed: 11/15/2022] Open
Abstract
Mercury (Hg) exposure poses serious health risks to humans, resulting in extensive investigations examining Hg accumulation, biotransformation and uptake in crops. In this investigation, Hg accumulation in potato tubers due to bioaccumulation processes was determined and bioconcentration factors affecting bioaccumulation were identified using a greenhouse experiment. Our results showed that the percentage of available Hg concentrations from total Hg in soil samples were less than 1.2%, indicating that soils used in our experiment exhibited a high binding strength for Hg, with alkaline soil recording the lowest available Hg/total Hg ratio. Results indicated that soil type and Hg treatment, as well as their interactions, significantly affected Hg accumulation in potato tubers (P < 0.01). Importantly, our results also indicated that potatoes grown in soil with a Hg concentration two times higher than the Chinese Environmental Quality Standard exhibited no obvious toxic effects on humans; Bioconcentration factors (BCF) values (<0.04) suggested that potatoes can be considered as a low Hg accumulating species and suitable for human consumption. Potato yields in acidic soil were lower than those in neutral or alkaline soils, making this medium unsuitable for growth.
Collapse
Affiliation(s)
- Bo Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yi Gao
- Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Jiarui Han
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yige Liu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| |
Collapse
|
10
|
Trukhin AM, Kalinchuk VV. Hair mercury concentrations in the spotted seal (Phoca largha) pups from the Sea of Japan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27133-27140. [PMID: 30022391 DOI: 10.1007/s11356-018-2731-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
This publication presents the results of a study of the total mercury (THg) concentration in the fetal hair (lanugo) of the young spotted seals inhabiting the Peter the Great Bay, Sea of Japan. We analyzed samples from pups that were collected in 2014-2017 at the seal breeding grounds. The concentration of total mercury was determined by atomic absorption spectrometry. The concentration of THg ranged from 1.52 to 6.68 μg/g dry weight. Mercury concentration in the lanugo exceeds that found in the environment (bottom sediments, sea water) and in other animals inhabiting the Bay. At the same time, the level was generally lower than that found in young seals of most other pinniped species (Steller sea lion Eumetopias jubatus, Northern fur seal Callorhinus ursinus, Harbor seal Phoca vitulina richardsi, Northern elephant seal Mirounga angustirostris, California sea lion Zalophus californianus) from the North Pacific.
Collapse
Affiliation(s)
- Alexey M Trukhin
- V.I.Il'ichev Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok, Russia, 6900041.
| | - Viktor V Kalinchuk
- V.I.Il'ichev Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok, Russia, 6900041
| |
Collapse
|
11
|
A Two-Year Study on Mercury Fluxes from the Soil under Different Vegetation Cover in a Subtropical Region, South China. ATMOSPHERE 2018. [DOI: 10.3390/atmos9010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|