1
|
Bocharnikova EN, Tchaikovskaya ON, Solomonov VI, Makarova AS. UV and pulsed electron beam radiation for effective bisphenol A degradation. CHEMOSPHERE 2024; 356:141802. [PMID: 38556183 DOI: 10.1016/j.chemosphere.2024.141802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/28/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The paper presents the results of studying the efficiency of the bisphenol A transformation in water exposed to ultraviolet radiation and a high-energy-pulse-electron beam (e-beam). It has been shown that in both cases, degradation of dissolved bisphenol A occurs, accompanied by an increase in the absorption coefficient in the wavelength region of more than 300 nm. After exposure, products were recorded that fluoresced in the region of more than λ = 400 nm. The fluorescent transformation product of bisphenol A in water (λ = 425 nm) was maximum formatted after an KrCl excilamp irradiated, and under the action of an e-beam, the accumulation of this product was minimal. Under e-beam radiation (170 keV) the efficiency of bisphenol A (1 mM) removal reached 97%. The data obtained allow us to develop ideas about photolysis and radiolysis in natural water systems when knowledge about targeted and optimal conditions for the degradation of bisphenol A is needed.
Collapse
Affiliation(s)
- Elena N Bocharnikova
- National Research Tomsk State University, 634050, 36, Lenin Ave., Tomsk, Russian Federation
| | - Olga N Tchaikovskaya
- National Research Tomsk State University, 634050, 36, Lenin Ave., Tomsk, Russian Federation; Institute of Electrophysics, Ural Branch of Russian Academy of Sciences, 620110, 106, Amundsen St., Ekaterinburg, Russian Federation.
| | - Vladimir I Solomonov
- Institute of Electrophysics, Ural Branch of Russian Academy of Sciences, 620110, 106, Amundsen St., Ekaterinburg, Russian Federation
| | - Anna S Makarova
- Institute of Electrophysics, Ural Branch of Russian Academy of Sciences, 620110, 106, Amundsen St., Ekaterinburg, Russian Federation
| |
Collapse
|
2
|
Zhang B, Cui Y, Liao B, Tang C, Shu Y. Experimental checking and modeling of the influence of operation conditions on the first order kinetic constants in free water surface wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117348. [PMID: 36706603 DOI: 10.1016/j.jenvman.2023.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The most commonly used model in constructed wetlands is the first-order removal model, and first order kinetic constants (k) are the key parameters. The presumption is often made that k are constants. However, it is possible that k are functions of operating conditions, but the influence of operation conditions on k is unclear. In this study, response surface methodology was used to explore the variation patterns of ka (area rate constants) and kV (volume rate constants) for the removal of total nitrogen (TN) and total phosphorus (TP) in free water surface (FWS) wetlands. The experimental variables included hydraulic loading rate (HLR), water depth, and inlet concentration (Cin). The results showed that kV was more variable than ka, and the area-based first-order model is more suitable for simulating TN and TP in FWS wetlands. Inlet concentration (Cin) was significant for ka; Cin and water depth were significant for kV; HLR and the interaction between factors were insignificant. The effects of Cin on ka and kV can be described by an upward convex quadratic curve, while the effect of water depth on kV demonstrates a downward convex quadratic curve. The first-order area rate constant for TN removal was given by k = -47.66 + 22.01 Cin - 1.154 Cin2; the first-order area rate constant for TP removal was given by k = -27.75 + 95.88 Cin - 30.73 Cin2. Based on the variation patterns, the traditional k-C model was modified to the kψ-C model. The kψ-C model produced the best results at simulating the outlet concentration and removal efficiency (RE).
Collapse
Affiliation(s)
- Bochao Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| | - Yuanlai Cui
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| | - Bin Liao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| | - Chi Tang
- Zhanghe Engineering Management Bureau, Jingmen, 448156, Hubei, China
| | - Yonghong Shu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
3
|
Aseev D, Batoeva A, Sizykh M, Olennikov D, Matafonova G. Degradation of Bisphenol A in an Aqueous Solution by a Photo-Fenton-Like Process Using a UV KrCl Excilamp. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1152. [PMID: 33525552 PMCID: PMC7908459 DOI: 10.3390/ijerph18031152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/29/2022]
Abstract
Bisphenol A (BPA), a precursor to important plastics, is regarded as a common aquatic micropollutant with endocrine-disrupting activity. In the present study, we explored the capability of a UV KrCl excilamp (222 nm) to degrade BPA by a photo-Fenton-like process using persulfate under flow-through conditions. The first-order rate constants of degradation were obtained and the mineralization of dissolved organic carbon (DOC) was estimated. The results showed complete BPA degradation and high DOC mineralization (70-97%). A comparative analysis of degradation rates and DOC removal in the examined systems (UV, Fe2+/S2O82-, UV/S2O82- and UV/Fe2+/S2O82-) revealed a significant synergistic effect in the photo-Fenton-like system (UV/Fe2+/S2O82-) without the accumulation of toxic intermediates. This indicated that the BPA was oxidized via the conjugated radical chain mechanism, which was based on the photo-induced and catalytic processes involving HO• and SO4-• radicals. The primary intermediates of BPA degradation in the UV/Fe2+/S2O82- system were identified by HPLC/MS and the oxidation pathway was proposed. The high performance of the photo-Fenton-like process employing a quasi-monochromatic UV radiation of a KrCl excilamp offers promising potential for an efficient removal of such micropollutants from aqueous media.
Collapse
Affiliation(s)
- Denis Aseev
- Baikal Institute of Nature Management of Siberian Branch of Russian Academy of Sciences, 6, Sakhyanovoy St., 670047 Ulan-Ude, Russia; (D.A.); (A.B.); (M.S.)
| | - Agniya Batoeva
- Baikal Institute of Nature Management of Siberian Branch of Russian Academy of Sciences, 6, Sakhyanovoy St., 670047 Ulan-Ude, Russia; (D.A.); (A.B.); (M.S.)
| | - Marina Sizykh
- Baikal Institute of Nature Management of Siberian Branch of Russian Academy of Sciences, 6, Sakhyanovoy St., 670047 Ulan-Ude, Russia; (D.A.); (A.B.); (M.S.)
| | - Daniil Olennikov
- Institute of General and Experimental Biology of Siberian Branch of Russian Academy of Sciences, 6, Sakhyanovoy St., 670047 Ulan-Ude, Russia;
| | - Galina Matafonova
- Baikal Institute of Nature Management of Siberian Branch of Russian Academy of Sciences, 6, Sakhyanovoy St., 670047 Ulan-Ude, Russia; (D.A.); (A.B.); (M.S.)
| |
Collapse
|
4
|
Aristizábal A, Perilla G, Lara-Borrero JA, Diez R. KrCl and XeCl excilamps and LP-Hg lamp for UV and UV/H 2O 2 decolourization of dyes in water. ENVIRONMENTAL TECHNOLOGY 2020; 41:238-250. [PMID: 29985103 DOI: 10.1080/09593330.2018.1494755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
In the present study, the decolourization efficiencies of LP-Hg lamp, XeCl and KrCl excilamps at the same power density were compared for the decolourization of dyes in water by UV and UV/H2O2 processes in a batch reactor. Laboratory prototypes of XeCl and KrCl excilamps and a commercial LP-Hg lamp were studied as UV sources. Methylene Blue and Eliamine Blue dyes were used as model pollutants. The effect of the initial concentrations of dye and H2O2 in the TOC removal and kinetic parameters were also studied. The ratio of dye decolourization to the electric power consumption of the KrCl excilamp and LP-Hg lamp for the decolourization of Methylene Blue and Eliamine Blue were evaluated. As a result, the KrCl excilamp showed significantly higher decolourization efficiencies than LP-Hg lamp and XeCl excilamp, but the dye removal rate was significantly slower for Methylene Blue than for Eliamine Blue with this lamp. The KrCl lamp can be an alternative to conventional LP-Hg lamp for the decolourization of dyes by photodegradation, but it depends on the type of dye treated. The addition of H2O2 in a concentration between 0.05 and 0.09%v/v increases significantly the efficiency of the decolourization of Methylene Blue, and further increase does not lead to a higher increase in conversion. The experimental data were fitted to the one phase decay kinetic model with good agreement and the kinetic parameters were reported.
Collapse
Affiliation(s)
- A Aristizábal
- Process Engineering Department, Universidad EAFIT, Medellín, Colombia
- Environmental Engineering Department, Universidad de Medellín, Medellín, Colombia
- Industrial Engineering Department, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - G Perilla
- Electronics Engineering Department, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - J A Lara-Borrero
- Civil Engineering Department, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - R Diez
- Electronics Engineering Department, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
5
|
Wong AMC, Liu HL, Tsai ML, Schwartz ES, Yeh CH, Wang HS, Wu TW, Lin CY. Arterial spin-labeling magnetic resonance imaging of brain maturation in early childhood: Mathematical model fitting to assess age-dependent change of cerebral blood flow. Magn Reson Imaging 2019; 59:114-120. [PMID: 30905764 DOI: 10.1016/j.mri.2019.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/03/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE To determine the trajectory of age-dependent cerebral blood flow (CBF) change in infants and young children by fitting mathematical models to the imaging data. METHODS In this retrospective study, we reviewed the arterial spin-labeling imaging studies of 49 typically developing infants and young children at postmenstrual age (PMA) ranging from 38 to 194 weeks. All patients had normal structural MR imaging. Coregistration and gray matter segmentation were performed to extract whole-brain CBF values. Regional CBF values were obtained using manual region-of-interest placement. Curve estimation regression procedures with the corrected Akaike information criterion (AICc) were performed to determine the mathematical model best fitting the relationship between the CBF (whole-brain and regional measurements) and PMA of the patients. RESULTS Whole-brain CBF trajectory was best fitted by a cubic model (AICc = 215.95; R2 = 0.566; P < .001). Whole-brain CBF at 1, 6, 12, and 24 months was estimated to be 36, 52, 58, and 55 mL/100 g/min, respectively. Regional CBF trajectory was also best fitted by a cubic model in the frontal (AICc = 233.63; R2 = 0.442; P < .001), parietal (AICc = 229.18; R2 = 0.614; P < .001), basal ganglion (AICc = 239.39; R2 = 0.178; P = .043), temporal (AICc = 236.01; R2 = 0.441; P < .001), and occipital (AICc = 236.46; R2 = 0.475; P < .001) regions. CONCLUSIONS In early childhood, the trajectory of CBF change was nonlinear and best fitted by the cubic model for the whole brain and all brain regions.
Collapse
Affiliation(s)
- Alex Mun-Ching Wong
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung/Linkou, and Chang Gung University, Taiwan.
| | - Ho-Ling Liu
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ming-Lun Tsai
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung/Linkou, and Chang Gung University, Taiwan
| | - Erin Simon Schwartz
- Department of Radiology, The Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, USA.
| | - Chih-Hua Yeh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung/Linkou, and Chang Gung University, Taiwan
| | - Huei-Shyong Wang
- Division of Pediatric Neurology, Department of Pediatrics, Chang Gung Children's Hospital and Chang Gung University, Linkou, Taiwan.
| | - Tai-Wei Wu
- Feta and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
6
|
Antwi P, Li J, Boadi PO, Meng J, Koblah Quashie F, Wang X, Ren N, Buelna G. Efficiency of an upflow anaerobic sludge blanket reactor treating potato starch processing wastewater and related process kinetics, functional microbial community and sludge morphology. BIORESOURCE TECHNOLOGY 2017; 239:105-116. [PMID: 28501683 DOI: 10.1016/j.biortech.2017.04.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Herein, an upflow anaerobic sludge blanket reactor was employed to treat potato starch processing wastewater and the efficacy, kinetics, microbial diversity and morphology of sludge granules were investigated. When organic loading rate (OLR) ranging from 2.70 to 13.27kgCOD/m3.d was implemented with various hydraulic retention times (72h, 48h and 36h), COD removal could reach 92.0-97.7%. Highest COD removal (97.7%) was noticed when OLR was 3.65kgCOD/m3.d, but had declined to 92.0% when OLR was elevated to 13.27kgCOD/m3.d. Methane and biogas production increased from 0.48 to 2.97L/L.d and 0.90 to 4.28L/L.d, respectively. Kinetics and predictions by modified-Gompertz model agreed better with experimental data as opposed to first-order kinetic model. Functional population with highest abundance was Chloroflexi (28.91%) followed by Euryarchaeota (22.13%), Firmicutes (16.7%), Proteobacteria (16.25%) and Bacteroidetes (7.73%). Compared with top sludge, tightly-bound extracellular polymeric substances was high within bottom and middle sludge. Morphology was predominantly Methanosaeta-like cells, Methanosarcina-like cells, rods and cocci colonies.
Collapse
Affiliation(s)
- Philip Antwi
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Portia Opoku Boadi
- School of Management, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin 150001, PR China.
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Frank Koblah Quashie
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Gerardo Buelna
- Centre de Recherché Industrielle du Québec (CRIQ), 333 Franquet, Sainte-Foy, Québec G1P 4C7 Canada.
| |
Collapse
|