1
|
Swami S, Suthar S, Singh R, Thakur AK, Gupta LR, Sikarwar VS. Potential of ionic liquids as emerging green solvent for the pretreatment of lignocellulosic biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12871-12891. [PMID: 38285255 DOI: 10.1007/s11356-024-32100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Lignocellulosic biomass is available in abundance as a renewable resource, but the major portion of it is often discarded as waste without utilizing its immense potential as an alternative renewable energy resource. To overcome recalcitrance of lignocellulosic biomass, various pretreatment methods are applied to it, so that the complex and rigid polymeric structure can be broken down into fractions susceptible for enzymatic hydrolysis. Effective and efficient biomass processing is the goal of pretreatment methods, but none of the explored pretreatment methods are versatile enough to fulfil the requirement of biomass processing with greater flexibility in terms of operational cost and desired output efficiency. Deployment of green solvents such as ionic liquids for the pretreatment of lignocellulosic biomass has been a topic of discussion amongst the scientific community in recent times. The presented work provides a detailed overview on the deployment of ionic liquid for the pretreatment of lignocellulosic biomass coupled with a brief discussion on other pretreatments methods. The recyclability and reusability along with other unique properties makes an ionic liquid pretreatment different from the other traditional pretreatment methods. Also, this study explores diverse critical parameters that governs the dissolution process of biomass. Hazardous properties of ionic liquids have also been explored. Future perspective and recommendations have been given for an efficient, effective, and eco-friendly deployment of ionic liquid in biomass pretreatment process.
Collapse
Affiliation(s)
- Siddharth Swami
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Rajesh Singh
- Division of Research & Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Amit Kumar Thakur
- Department of Mechanical Engineering, Lovely Professional University, Phagwara, 144001, India
| | - Lovi Raj Gupta
- Department of Mechanical Engineering, Lovely Professional University, Phagwara, 144001, India
| | - Vineet Singh Sikarwar
- Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 1782/3, 182 00, Prague 8, Czech Republic.
- Department of Power Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
2
|
Pretreatment of Wheat Straw Lignocelluloses by Deep Eutectic Solvent for Lignin Extraction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227955. [PMID: 36432056 PMCID: PMC9697946 DOI: 10.3390/molecules27227955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
In order to increase the fractionation efficiency of the wheat straw, a deep eutectic solvent (DES) system consisting of chlorine/lactic acid was used in this study for wheat straw pretreatment. The outcomes exhibited that DES pretreatment significantly enhanced the capability to extract lignin, retain cellulose, and remove hemicellulose. The best condition for the pretreatment of wheat straw was 150 °C for 6 h. The process retained most cellulose in the pretreated biomass (49.94-73.60%), and the enzymatic digestibility of the pretreatment residue reached 89.98%. Further characterization of lignin showed that the high yield (81.54%) and the high purity (91.33%) resulted from the ether bond cleavage in lignin and the connection between hemicellulose and lignin. As for application, the enzymatic hydrolysis of the best condition reached 89.98%, and the lignin also had suitable stability. The investigation exhibited that DES pretreatment has the potential to realize an efficient fractionation of lignocellulosic biomass into high-applicability cellulose and lignin of high-quality.
Collapse
|
3
|
New EK, Tnah SK, Voon KS, Yong KJ, Procentese A, Yee Shak KP, Subramonian W, Cheng CK, Wu TY. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114385. [PMID: 35104699 DOI: 10.1016/j.jenvman.2021.114385] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The high dependence on crude oil for energy utilization leads to a necessity of finding alternative sustainable resources. Solvents are often employed in valorizing the biomass into bioproducts and other value-added chemicals during treatment stages. Unfortunately, despite the effectiveness of conventional solvents, hindrances such as expensive solvents, unfavourable environmental ramifications, and complicated downstream separation systems often occur. Therefore, the scientific community has been actively investigating more cost-effective, environmentally friendly alternatives and possess the excellent dissolving capability for biomass processing. Generally, 'green' solvents are attractive due to their low toxicity, economic value, and biodegradability. Nonetheless, green solvents are not without disadvantages due to their complicated product recovery, recyclability, and high operational cost. This review summarizes and evaluates the recent contributions, including potential advantages, challenges, and drawbacks of green solvents, namely ionic liquids, deep eutectic solvents, water, biomass-derived solvents and carbon dioxide in transforming the lignocellulosic biomass into high-value products. Moreover, research opportunities for future developments and potential upscale implementation of green solvents are also critically discussed.
Collapse
Affiliation(s)
- Eng Kein New
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Shen Khang Tnah
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Khai Shing Voon
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Undergraduate Research Opportunities Program (UROP), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Khai Jie Yong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Alessandra Procentese
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Katrina Pui Yee Shak
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor Darul Ehsan, Malaysia; Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Wennie Subramonian
- School of Computing, Engineering & Design Technologies, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, United Kingdom
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Ji Z, Wu Y, Li X, Wang Y, Ling Z, Meng Y, Lu P, Chen F. Electrogenerated alkaline hydrogen peroxide pretreatment of waste wheat straw to enhance enzymatic hydrolysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Hamdy A, Abd Elhafez S, Hamad H, Ali R. The Interplay of Autoclaving with Oxalate as Pretreatment Technique in the View of Bioethanol Production Based on Corn Stover. Polymers (Basel) 2021; 13:3762. [PMID: 34771319 PMCID: PMC8587947 DOI: 10.3390/polym13213762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
Bio-based treatment technologies are gaining great interest worldwide, and significant efforts are being afforded to develop technology for the use of lignocellulosic biomass. The potential of corn stover (CS) as a feedstock for bioethanol production was investigated by creating an optimal pretreatment condition to maximize glucose production. The current study undertook the impact of novel physico-chemical pretreatment methods of CS, i.e., autoclave-assisted oxalate (CSOA) and ultrasound-assisted oxalate (CSOU), on the chemical composition of CS and subsequent saccharification and fermentation for bioethanol production. The delignification was monitored by physicochemical characterizations such as SEM, XRD, FTIR, CHNs, and TGA. The results evidenced that delignification and enzymatic saccharification of the CS pretreated by CSOA was higher than CSOU. The optimum enzymatic saccharification operating conditions were 1:30 g solid substrate/mL sodium acetate buffer at 50 °C, shaking speed 100 rpm, and 0.4 g enzyme dosage. This condition was applied to produce glucose from CS, followed by bioethanol production by S. cerevisiae using an anaerobic fermentation process after 72 h. S. cerevisiae showed high conversion efficiency by producing a 360 mg/dL bioethanol yield, which is considered 94.11% of the theoretical ethanol yield. Furthermore, this research provides a potential path for waste material beneficiation, such as through utilizing CS.
Collapse
Affiliation(s)
- Ali Hamdy
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technology Application (SRTA-City), New Borg El-Arab City P.O. Box 21934, Alexandria, Egypt;
| | - Sara Abd Elhafez
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technology Application (SRTA-City), New Borg El-Arab City P.O. Box 21934, Alexandria, Egypt;
| | - Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technology Application (SRTA-City), New Borg El-Arab City P.O. Box 21934, Alexandria, Egypt;
| | - Rehab Ali
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technology Application (SRTA-City), New Borg El-Arab City P.O. Box 21934, Alexandria, Egypt;
| |
Collapse
|
6
|
Novel solid-state fermentation extraction of 5-O-caffeoylquinic acid from heilong48 soybean using Lactobacillus helviticus: Parametric screening and optimization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Hydrothermal carbonization of oil palm trunk via taguchi method. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Ho MC, Wu TY. Sequential pretreatment with alkaline hydrogen peroxide and choline chloride:copper (II) chloride dihydrate - Synergistic fractionation of oil palm fronds. BIORESOURCE TECHNOLOGY 2020; 301:122684. [PMID: 31954964 DOI: 10.1016/j.biortech.2019.122684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
In this study, a novel Type II deep eutectic solvent (DES) namely, choline chloride:copper(II) chloride dihydrate (ChCl:CuCl2·2H2O) was used to pretreat oil palm fronds (OPFs). The sequential pretreatment with alkaline hydrogen peroxide (0.25 vol%, 90 min) at ambient conditions and a Type II DES (90 °C, 3 h) at a later stage resulted in a delignification of 55.14% with high xylan (80.79%) and arabinan (98.02%) removals. The characterizations of pretreated OPFs confirmed the excellent performance of DES in OPF fractionation. Thus, the application of a Type II DES at ambient pressure and relatively lower temperature was able to improve the lignin and hemicellulose removals from OPFs.
Collapse
Affiliation(s)
- Mun Chun Ho
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
9
|
Zhang W, Lei F, Li P, Zhang X, Jiang J. Co-catalysis of magnesium chloride and ferrous chloride for xylo-oligosaccharides and glucose production from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2019; 291:121839. [PMID: 31376673 DOI: 10.1016/j.biortech.2019.121839] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Inorganic salt treatment is a novel, high-yield, and environmentally friendly approach for the production of xylo-oligosaccharides from Sugarcane bagasse with degree of polymerization of 2-5. A xylo-oligosaccharides yield of 53.79% was obtained with 0.1 M MgCl2 treatment at 180 °C/10 min, and 41.89% with 0.1 M FeCl2 treatment at 140 °C/30 min. The xylo-oligosaccharides yield from the co-catalysis of 0.05 M FeCl2 + 0.05 M MgCl2 reached 54.68% (29.34% xylobiose and 20.94% xylotriose) at 140 °C/30 min. The co-catalysis not only effectively improved the xylobiose and xylotriose contents but also increased the total yield of xylo-oligosaccharides under mild reaction conditions. Additionally, the glucose yield observed from the solid residue after inorganic salt treatment was 71.62% by enzymatic hydrolysis. Mg2+ and Fe2+ are essential for good human health without separation from the system, therefore, the inorganic salt treatment can be potentially applied in the co-production of xylo-oligosaccharides and glucose.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Fuhou Lei
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Pengfei Li
- GuangXi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Xiankun Zhang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Ong VZ, Wu TY, Lee CBTL, Cheong NWR, Shak KPY. Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds. ULTRASONICS SONOCHEMISTRY 2019; 58:104598. [PMID: 31450331 DOI: 10.1016/j.ultsonch.2019.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 06/10/2023]
Abstract
This study demonstrated the effect of two-pot sequential pretreatment, comprising of ultrasound assisted deep eutectic solvent (DES) with the aim to investigate the effects of ultrasound amplitude and duration in enhancing delignification. Oil palm fronds (OPF) were ultrasonicated in a water medium, followed by a pretreatment using DES (choline chloride:urea). Fourier transform infra-red spectroscopy, X-ray diffraction, field emission scanning electron microscope, Brunauer-Emmet-Teller and solubilised lignin concentration were conducted to confirm the effectiveness of ultrasound assisted DES on the pretreatment of OPF. The recommended ultrasound conditions were determined to be 70% amplitude and duration of 30 min, where the sequential DES pretreatment was able to reduce lignin content of OPF to 14.01%, while improving xylose recovery by 58%.
Collapse
Affiliation(s)
- Victor Zhenquan Ong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Cornelius Basil Tien Loong Lee
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Nicholas Wei Ren Cheong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Katrina Pui Yee Shak
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
11
|
Lee CBTL, Wu TY, Ting CH, Tan JK, Siow LF, Cheng CK, Md Jahim J, Mohammad AW. One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. BIORESOURCE TECHNOLOGY 2019; 278:486-489. [PMID: 30711220 DOI: 10.1016/j.biortech.2018.12.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The performances of various anhydrous and aqueous choline chloride-dicarboxylic acid based deep eutectic solvents (DESs) were evaluated for furfural production from oil palm fronds without any additional catalyst. The effects of different carbon chain length dicarboxylic acids and water content in each DES on furfural production were investigated. Oil palm fronds, DES and water (0-5 ml) were mixed and reacted in an oil bath (60-300 min). Reacted oil palm fronds had the potential to be reused as cellulose-rich-valuable by-products. At 100 °C, aqueous choline chloride-oxalic acid (16.4 wt% H2O) produced the highest furfural yield of 26.34% and cellulose composition up to 72.79% in the reacted oil palm fronds. Despite operating at suitable reaction duration for dicarboxylic acid with longer carbon chain length, aqueous choline chloride-malonic acid and aqueous choline chloride-succinic acid performed poorly with furfural yield of less than 1%.
Collapse
Affiliation(s)
- Cornelius Basil Tien Loong Lee
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Chow Hung Ting
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ju Kheng Tan
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Lee Fong Siow
- School of Science, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Chin Kui Cheng
- Faculty of Chemical and Natural Resources Engineering, Lebuhraya Tun Razak, Universiti Malaysia Pahang, 26300 Gambang Kuantan, Pahang Darul Makmur, Malaysia
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|