1
|
Krishna SBN, Sheik AG, Pillay K, Ahmed Hamza M, Mohammed Elamir MY, Selim S. Nanotechnology in action: silver nanoparticles for improved eco-friendly remediation. PeerJ 2024; 12:e18191. [PMID: 39372718 PMCID: PMC11456292 DOI: 10.7717/peerj.18191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Nanotechnology is an exciting area with great potential for use in biotechnology due to the far-reaching effects of nanoscale materials and their size-dependent characteristics. Silver and other metal nanoparticles have attracted a lot of attention lately because of the exceptional optical, electrical, and antimicrobial characteristics they possess. Silver nanoparticles (AgNPs) stand out due to their cost-effectiveness and abundant presence in the earth's crust, making them a compelling subject for further exploration. The vital efficacy of silver nanoparticles in addressing environmental concerns is emphasized in this thorough overview that dives into their significance in environmental remediation. Leveraging the distinctive properties of AgNPs, such as their antibacterial and catalytic characteristics, innovative solutions for efficient treatment of pollutants are being developed. The review critically examines the transformative potential of silver nanoparticles, exploring their various applications and promising achievements in enhancing environmental remediation techniques. As environmental defenders, this study advocates for intensified investigation and application of silver nanoparticles. Furthermore, this review aims to assist future investigators in developing more cost-effective and efficient innovations involving AgNPs carrying nanoprobes. These nanoprobes have the potential to detect numerous groups of contaminants simultaneously, with a low limit of detection (LOD) and reliable reproducibility. The goal is to utilize these innovations for environmental remediation purposes.
Collapse
Affiliation(s)
- Suresh Babu Naidu Krishna
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, KwaZulu-Natal, South Africa
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Abdul Gaffar Sheik
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, KwaZulu-Natal, South Africa
| | - Karen Pillay
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Manhal Ahmed Hamza
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman, Sudan
| | | | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
2
|
Hedayati Marzbali M, Hakeem IG, Ngo T, Balu R, Jena MK, Vuppaladadiyam A, Sharma A, Choudhury NR, Batstone DJ, Shah K. A critical review on emerging industrial applications of chars from thermal treatment of biosolids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122341. [PMID: 39236613 DOI: 10.1016/j.jenvman.2024.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Thermochemical treatment is rapidly emerging as an alternative method for the management of stabilised sewage sludges (biosolids) to effectively reduce waste volume, degrade contaminants, and generate valuable products, particularly biochar and hydrochar. Biosolids-derived char has a relatively high concentration of heavy metals compared with agricultural chars but is still applied to land due to its beneficial properties and ability to retain metals. However, non-agricultural applications can provide additional economic and environmental benefits, promote sustainability and support a circular economy. This review identifies extensive non-agricultural opportunity for biosolids biochar, including adsorption, catalysis, energy storage systems, biological process enhancement, and as additives for rubber compounding and construction. Biosolids chars have received limited attention vs agricultural char, and we draw on both areas of literature, as well as evaluating differences between agricultural and biosolids chars. A key opportunity for biosolids biochar in comparison with other materials and agricultural chars is its sustainable and low-cost nature, relatively high metals content, improving catalyst properties, and ability to modify in various stages to tune it to specific applications. The specific opportunities for hydrochar have only received limited attention. Research needs to include better understanding of the benefits and limitations for specific applications, as well as adjacent drivers, including society, regulation, and market and economics.
Collapse
Affiliation(s)
- Mojtaba Hedayati Marzbali
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Ibrahim Gbolahan Hakeem
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Tien Ngo
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions for a Circular Economy (TREMS), RMIT University, Melbourne, Victoria, 3000, Australia
| | - Manoj Kumar Jena
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Arun Vuppaladadiyam
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Abhishek Sharma
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; Department of Chemical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste into Engineered Materials and Solutions for a Circular Economy (TREMS), RMIT University, Melbourne, Victoria, 3000, Australia
| | - Damien J Batstone
- ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Kalpit Shah
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, College of STEM, RMIT University, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
3
|
McNamara P, Liu Z, Tong Y, Santha H, Moss L, Zitomer D. Pyrolysis-A tool in the wastewater solids handling portfolio, not a silver bullet: Benefits, drawbacks, and future directions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10863. [PMID: 37021664 DOI: 10.1002/wer.10863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Pyrolysis is the process whereby carbonaceous materials, such as biosolids, are heated between 400°C and 900°C in the absence of oxygen. Three main products are generated: a solid product called biochar, a py-liquid that consists of aqueous phase and non-aqueous phase liquid, and py-gas. The biochar holds value as a beneficial soil amendment and sequesters carbon. The py-liquid is potentially hazardous and needs to be dealt with (including potentially reducing it on-site via catalysis or thermal oxidation). Py-gas can be used on-site for energy recovery. Pyrolysis has gained recent interest due to concern over per- and polyfluoroalkyl substances (PFAS) in biosolids. Although pyrolysis can remove PFAS from biosolids, it has been shown to produce PFAS that reside in py-liquid, and the fate in py-gas remains a knowledge gap. More research is needed to help close the PFAS and fluorine mass balance through pyrolysis influent and effluent products because pyrolysis alone does not destroy all PFAS. The moisture content of biosolids substantially affects the energy balance for pyrolysis. Utilities that already produce a dried biosolids product are in a better position to install pyrolysis. Pyrolysis has both defined benefits (solids reduction, PFAS removal from biosolids, and biochar production) as well as remaining questions (the fate of PFAS in py-gas and py-liquid, mass balance on nutrients, and py-liquid handling options) that will be answered through more pilot and full-scale demonstrations. Regulations and local policies (such as carbon sequestration credits) could affect pyrolysis implementation. Pyrolysis should be considered as an option in the biosolids stabilization toolbox with application being based on individual circumstances of a utility (e.g., energy, moisture content of biosolids, PFAS). PRACTITIONER POINTS: Pyrolysis has known benefits but limited full-scale operational data. Pyrolysis removes PFAS from biochar, but PFAS fate in gas phase is unknown. Moisture content of influent feed solids affects energy balance of pyrolysis. Policy on PFAS, carbon sequestration, or renewable energy could impact pyrolysis.
Collapse
Affiliation(s)
- Patrick McNamara
- Water Technology Group, Black & Veatch, Overland Park, Kansas, USA
- Department of Civil, Construction & Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Zhongzhe Liu
- Department of Physics and Engineering, California State University-Bakersfield, 9001 Stockdale Highway, Bakersfield, California, 93311, USA
| | - Yiran Tong
- Stantec, Minneapolis, Minnesota, 55402, USA
| | - Hari Santha
- Water Technology Group, Black & Veatch, Overland Park, Kansas, USA
| | - Lynne Moss
- Water Technology Group, Black & Veatch, Overland Park, Kansas, USA
| | - Daniel Zitomer
- Department of Civil, Construction & Environmental Engineering, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Chu S, Feng X, Liu C, Wu H, Liu X. Advances in Chelating Resins for Adsorption of Heavy Metal Ions. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shiyu Chu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Xiaofang Feng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Chenchen Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Hanrong Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
- Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| |
Collapse
|
5
|
Xiang W, Zhang X, Cao C, Quan G, Wang M, Zimmerman AR, Gao B. Microwave-assisted pyrolysis derived biochar for volatile organic compounds treatment: Characteristics and adsorption performance. BIORESOURCE TECHNOLOGY 2022; 355:127274. [PMID: 35533889 DOI: 10.1016/j.biortech.2022.127274] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Biochar derived from corn stalk doping with activated carbon was produced by microwave-assisted pyrolysis and applied to sorb volatile organic compounds (VOCs: benzene and o-xylene). Specific surface area (SSA), total pore volume (TPV) and micropore volume (MV) of microwave biochar increased with increasing microwave power with the maximum values 325.2 m2·g-1, 0.181 mL·g-1 and 0.1420 mL·g-1, respectively. Adsorption capacities of benzene and o-xylene on microwave biochar ranged 6.82-54.75 mg·g-1 and 7.43-48.73 mg·g-1, which were separate positively related with SSA, TPV, and MV. Benzene adsorption was mainly dominated by surface interaction and partition mechanisms, while o-xylene adsorption was governed by pore filling. The adsorption capacities of microwave biochar for benzene and o-xylene decreased by only 0.30% and 0.99% on the 5th cycle that illustrated the reasonably good reusability of microwave biochar. The results of this research demonstrate that microwave biochar is a promising adsorbent for VOCs removal.
Collapse
Affiliation(s)
- Wei Xiang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China.
| | - Chengcheng Cao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Min Wang
- Xuzhou Environmental Monitoring Center of Jiangsu Province, Xuzhou 221018, China
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Simulation and optimization of heating rate and thermal uniformity of microwave reactor for biomass pyrolysis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Zhang H, Zhou H. Industrial lignins: the potential for efficient removal of Cr(VI) from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10467-10481. [PMID: 34523095 DOI: 10.1007/s11356-021-16402-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Cr(VI), a serious threat to human health, widely exists in the effluents of various industrial processes. In this paper, the potential of industrial lignin for efficient removal of Cr(VI) from wastewater was systematically investigated, including pulping black liquor lignin (BLN), enzymolysis lignin (ELN), and SPORL pretreatment spent liquor (FS). The structure characterizations of three lignins were investigated by thermogravimetry (TG), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) surface area measurement, scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). Among these three lignins, BLN showed the highest adsorption amount of Cr(VI) and good selectivity in wastewater simulation. According to the Langmuir model, the calculated maximum adsorption amount of Cr(VI) on ELN, BLN, and FS was 801.57, 864.30, and 642.26 mg g-1, respectively. The adsorption of Cr(VI) by industrial lignins was a chemisorption process, during which Cr(VI) was reduced to low-toxic Cr(III). This paper provided a promising application for the effective utilization of industrial lignins.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 277590, China
| | - Haifeng Zhou
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 277590, China.
| |
Collapse
|
8
|
Hasana NH, Wahi R, Yusof Y, Mubarak NM. Magnesium-Palm Kernel Shell Biochar Composite for Effective Methylene Blue Removal: Optimization via Response Surface Methodology. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2021. [DOI: 10.47836/pjst.29.3.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigates the properties and potential application of Mg-PKS biochar composite for methylene blue solution (MB) adsorption. The Mg-PKS biochar composite was developed from palm kernel shell biochar via steam activation followed by MgSO4 treatment and carbonization. The effect of process parameters such as solution pH (4-10), contact time (30-90 min) and adsorbent dosage (0.1-0.5 g) were investigated via central composite design, response surface methodology. Results revealed that the Mg-PKS biochar composite has irregular shapes pore structure from SEM analysis, a surface area of 674 m2g-1 and average pore diameters of 7.2195 μm based on BET analysis. RSM results showed that the optimum adsorption of MB onto Mg-biochar composite was at pH 10, 30 min contact time and 0.5 g/100 mL dosage with a removal efficiency of 98.50%. In conclusion, Mg treatment is a potential alternative to other expensive chemical treatment methods for biochar upgrading to the adsorbent.
Collapse
|
9
|
Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111918. [PMID: 33433370 DOI: 10.1016/j.jenvman.2020.111918] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles are one of the most beneficial forms of heavy metals in nanotechnology applications. Due to its exceptional antimicrobial properties, low electrical and thermal resistance, and surface plasmon resonance, silver nanoparticles are used in a wide variety of products, including consumer goods, healthcare, catalysts, electronics, and analytical equipment. As the production and applications of silver nanoparticles containing products increase daily, the environmental pollution due to silver nanoparticles release is increasing and affecting especially the aqueous ecosystem. Silver nanoparticles can kill useful bacteria in soil and water, and bioaccumulate in living organisms even at low concentrations from 10-2 to 10 μg/mL silver can show antibacterial effect. On the other hand, the maximum silver discharge limit into freshwater is 0.1 μg/L and 3.2 μg/L for Australia and the USA, respectively. To reduce its toxic consequences and meet the regulatory guidelines, it is crucial to remove silver nanoparticles from wastewater before it is discharged into other water streams. Several technologies are available to remove silver nanoparticles, but the adsorption process using low-cost adsorbents is a promising alternative to mitigate silver nanoparticle pollution in the bulk stage. As one of the low-cost adsorbents, biochar produced from the biomass waste could be a suitable adsorbent. This review focuses on collating the latest evidence on silver nanoparticle production, applications, environmental consequences, and cost-effective technological approaches for silver removal from wastewater.
Collapse
Affiliation(s)
- Md Anwarul Islam
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
10
|
Comparison of Monovalent and Divalent Ions Removal from Aqueous Solutions Using Agricultural Waste Biochars Prepared at Different Temperatures-Experimental and Model Study. Int J Mol Sci 2020; 21:ijms21165851. [PMID: 32824005 PMCID: PMC7461599 DOI: 10.3390/ijms21165851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
Copper (Cu) and silver (Ag) occur naturally in the environment but have toxic effects on organisms at elevated concentrations. This paper discussed the removal of Cu and Ag from aqueous solutions using biochars obtained at different pyrolysis temperatures. Three biomass sources-sunflower husks (SH), a mixture of sunflower husks and rapeseed pomace (SR) and wood waste (WW)-were pyrolyzed at 300, 400 and 500 °C. Biochars produced at 500 °C exhibited a higher specific surface area, lower variable surface charge and lower contents of surface functional groups than those obtained at 400 or 300 °C. The pseudo-second-order model and intra-particle diffusion (IPD) model well-described the Cu and Ag adsorption kinetics. The Cu adsorption was about 1.48 times slower than the Ag adsorption on the biochars obtained at 500 °C. The model of Langmuir-Freundlich well-described the equilibrium adsorption. Agricultural biochars obtained at >500 °C had a surface with a higher affinity to attract Ag than Cu and were able to remove a larger amount of heavy metals from aqueous media than those prepared at lower pyrolysis temperatures.
Collapse
|
11
|
Rinklebe J, Shaheen SM, El-Naggar A, Wang H, Du Laing G, Alessi DS, Sik Ok Y. Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil. ENVIRONMENT INTERNATIONAL 2020; 140:105754. [PMID: 32371311 DOI: 10.1016/j.envint.2020.105754] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to study the redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal, and sediment phase of a mining soil treated and untreated with biochar as affected by the redox potential (EH) -dependent changes of soil pH, dissolved organic carbon, Fe, Mn and S. The experiment was conducted stepwise at two EH cycles (+200 mV → -30 mV → +333 mV → 0 mV) using biogeochemical microcosm. Silver was abundant in the colloidal fraction in both cycles, indicating that Ag might be associated with colloids under different redox conditions. Antimony, Sn and Tl were abundant in the colloidal fraction in the first cycle and in the dissolved fraction in the second cycle, which indicates that they are retained by colloids under oxic acidic conditions and released under reducing alkaline conditions. Release of dissolved Sb, Sn, and Tl was governed positively by pH, Fe, S, and dissolved aromatic compounds. Biochar mitigated Ag release, but promoted Sb, Sn, and Tl mobilization, which might be due to the wider range of EH (-12 to +333) and pH (4.9-8.1) in the biochar treated soil than the un-treated soil (EH = -30 to +218; pH = 5.9-8.6). Also, the biochar surface functional groups may act as electron donors for the Sb, Sn, and Tl reduction reactions, and thus biochar may play an important role in reducing Tl3+ to Tl+, Sb5+ to Sb3+, and Sn4+ to Sn2+, which increase their solubility under reducing conditions as compared to oxic conditions. Thallium and Sb exhibit higher potential mobility in the solid phase than Sn and Ag. Biochar increased the potential mobility of Sb, Sn, and Tl under oxic acidic conditions. The results improve our understanding of the redox-driven mobilization of these contaminants in soils.
Collapse
Affiliation(s)
- Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Gijs Du Laing
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Youngwilai A, Kidkhunthod P, Jearanaikoon N, Chaiprapa J, Supanchaiyamat N, Hunt AJ, Ngernyen Y, Ratpukdi T, Khan E, Siripattanakul-Ratpukdi S. Simultaneous manganese adsorption and biotransformation by Streptomyces violarus strain SBP1 cell-immobilized biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136708. [PMID: 32019044 DOI: 10.1016/j.scitotenv.2020.136708] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 05/12/2023]
Abstract
Consumption of water containing high proportions of manganese could cause Parkinson's like symptoms and damage the central nervous systems. This study aims to investigate the potential of manganese removal through the development of microbial cell-immobilized biochar. The wood vinegar industry generates a large volume of carbonized wood waste (natural biochar) from the pyrolytic process. This is the first investigation utilizing this low value waste combined with biological treatment for water purification. Raw and hydrogen peroxide-modified biochars were used to immobilize an effective manganese-oxidizing bacterium, Streptomyces violarus strain SBP1 (SBP1). The results demonstrated that the modified biochar had a higher proportion of oxygen-containing functional groups leading to better manganese removal. Manganese adsorption by the modified biochar fitted pseudo-second-order and Langmuir models with the maximum adsorption capacity of 1.15 mg g-1. The modified biochar with SBP1 provided the highest removal efficiency at 78%. The advanced synchrotron analyses demonstrated that manganese removal by the biochar with SBP1 is due to the synergistic combination of manganese adsorption by biochars and biological oxidation by SBP1.
Collapse
Affiliation(s)
- Atcharaporn Youngwilai
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Nichada Jearanaikoon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Jitrin Chaiprapa
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Nontipa Supanchaiyamat
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yuvarat Ngernyen
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thunyalux Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA
| | - Sumana Siripattanakul-Ratpukdi
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand.
| |
Collapse
|
13
|
Pascu B, Ardean C, Davidescu CM, Negrea A, Ciopec M, Duțeanu N, Negrea P, Rusu G. Modified Chitosan for Silver Recovery-Kinetics, Thermodynamic, and Equilibrium Studies. MATERIALS 2020; 13:ma13030657. [PMID: 32024185 PMCID: PMC7040575 DOI: 10.3390/ma13030657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study is to investigate the silver recovery from aqueous solutions. There are a variety of recovery methods, such as hydrometallurgical, bio-metallurgical, cementation, reduction, electrocoagulation, electrodialysis, ion exchange, etc. Adsorption represents a convenient, environment friendly procedure, that can be used to recover silver from aqueous solutions. In this paper we highlight the silver adsorption mechanism on chitosan chemically modified with active groups, through kinetic, thermodynamic, and equilibrium studies. A maximum adsorption capacity of 103.6 mg Ag(I)/g of adsorbent for an initial concentration of 700 mg/L was noticed by using modified chitosan. Lower adsorption capacity has been noticed in unmodified chitosan—a maximum of 75.43 mg Ag(I)/g. Optimum contact time was 120 min and the process had a maximum efficiency when conducted at pH higher than 6. At the same time, a way is presented to obtain metallic silver from the adsorbent materials used for the recovery of the silver from aqueous solutions.
Collapse
Affiliation(s)
- Bogdan Pascu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
| | - Cristina Ardean
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
| | - Corneliu Mircea Davidescu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Correspondence: (C.M.D.); (P.N.); Tel.: +40-256-404147 (C.M.D.); +40-256-404192 (P.N.)
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
| | - Narcis Duțeanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
- Research institute for renewable energy, 138, Gavril Musicescu Street, 300777 Timisoara, Romania
- Correspondence: (C.M.D.); (P.N.); Tel.: +40-256-404147 (C.M.D.); +40-256-404192 (P.N.)
| | - Gerlinde Rusu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 2 Piata Victoriei, RO 300006 Timisoara, Romania; (B.P.); (C.A.); (A.N.); (M.C.); (N.D.); (G.R.)
| |
Collapse
|
14
|
Thang PQ, Jitae K, Giang BL, Viet NM, Huong PT. Potential application of chicken manure biochar towards toxic phenol and 2,4-dinitrophenol in wastewaters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109556. [PMID: 31541848 DOI: 10.1016/j.jenvman.2019.109556] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 05/22/2023]
Abstract
In this study, chicken manure biochar (CBC) was prepared and applied as adsorbent for the removal of phenolic pollutants including phenol (Ph) and 2,4-Dinitrophenol (DNP) from wastewaters. The feasibility analysis was focused on the adsorption effects of various factors, such as initial concentration, adsorbent dosage and reaction time. The results showed that BC could efficiently remove the Ph and DNP within 90 min of reaction time. Increasing of CBC dosage up to 0.3 g results in the maximum removal efficiency of Ph and DNP and lowers initial concentration which is beneficial for the adsorption of phenolic compounds. The second-order kinetic model and the Langmuir isotherm provided the best correlation with the adsorption data. Based on the Langmuir isotherm, maximum adsorption capacities (qmax) of Ph and DNP were found at 106.2 and 148.1 mg g-1, respectively. The obtained qmax values for CB were higher than those reported in literature on the adsorption of Ph and DNP using different biochar. Analyzing the regeneration characteristics, BC displayed high reusability with less than 20% loss in adsorption capacities of Ph and DNP, even after five repeated cycles. Investigation of the adsorption equilibrium under various conditions suggested several possible interaction mechanisms, including hydrogen bonding, electrostatic interaction and π- π bonding, which were attributed to the binding affinity of the adsorbent-adsorbate interaction. In the field application, the CBC showed an excellent removal efficiencies of Ph and DNP from industrial wastewaters (around 80% phenolic pollutants were removed). These findings support the potential use of CBC as effective adsorbent for treatment of wastewater containing Ph and DNP.
Collapse
Affiliation(s)
- Phan Quang Thang
- Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Environment & Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Kim Jitae
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
| | - Bach Long Giang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, Dist. 4, Ho Chi Minh City, Vietnam; Center of Excellence for Green Energy and Environmental Nanomaterials, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
| | - N M Viet
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Pham Thi Huong
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
15
|
Zhang S, Ji Y, Dang J, Zhao J, Chen S. Magnetic apple pomace biochar: Simple preparation, characterization, and application for enriching Ag(I) in effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:115-123. [PMID: 30852191 DOI: 10.1016/j.scitotenv.2019.02.318] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/31/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
In order to manage and utilize a large amount of wasted apple pomace, the magnetic biochar was prepared through pyrolysis of apple pomace at 600 °C in nitrogen environment, followed by immersion aging in Fe(II)/Fe(III) aqueous solution. The characterization of the resulting magnetic biochar, herein called the M600APB, showed that the saturation magnetization value and the Brunauer-Emmett-Teller (BET) specific surface area of M600APB were 9.52 emu/g and 102.18 m2/g, respectively. The batch adsorption showed that M600APB could preferentially enrich the low concentration of Ag(I) with the maximum adsorption capacity of 818.4 mg/g in an Ag(I)-Pb(II)-Cu(II)-Ni(II)-Zn(II) aqueous system at ambient temperature. The column adsorption experiments indicated that M600APB could effectively enrich and separate Ag(I) from the same aqueous mixture. The presumable mechanism of Ag(I) adsorption on M600APB involves intra-particle diffusion, coordination, ion exchange and reduction. This study provided an effective approach to both utilize wasted apple pomace and enrich the low concentration of Ag(I) in a sustainable way.
Collapse
Affiliation(s)
- Sijing Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, China.
| | - Yongliang Ji
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, China
| | - Jing Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, China
| | - Junxue Zhao
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, China.
| | - Shuangli Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 710055 Xi'an, China
| |
Collapse
|
16
|
Wang L, Wang Y, Ma F, Tankpa V, Bai S, Guo X, Wang X. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1298-1309. [PMID: 31018469 DOI: 10.1016/j.scitotenv.2019.03.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 05/22/2023]
Abstract
Heavy metals (HMs) pose serious threat to both human and environmental health and therefore, effective and low-cost techniques to remove HMs are urgently required. Because HMs are difficult to be biodegraded and transformed, adsorption is a most promising treatment method in recent times. Biochar (BC), a low-cost and sustainable adsorbent material, has recently attracted much research attention due to its broad application prospects. While BC has many merits, it has a lower HMs adsorption efficiency than traditional activated carbon, limiting its practical applications. Furthermore, the HMs retained by BC are difficult to be desorbed, making the used sorbent material hazardous wastes if not well disposed of under natural conditions. Therefore, it is critical to seek effective surface modifications for BC, to improve its ability to HMs removal ability and the recyclability of BC loaded with HMs. This review represents and evaluates the reported modification methods for BC, the corresponding HMs removal mechanisms and the potential for reutilization of BC loaded with HMs. This review provides a basis for the effective practical application of BC in the treatment of HMs containing wastewater.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China.
| | - Yujiao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Vitus Tankpa
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Shanshan Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Xiaomeng Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| |
Collapse
|