1
|
Liu H, Li L, Ye W, Zhao B, Peng Y, Liu G, Gao X, Peng X. Simultaneous nitrification and denitrification in a hybrid activated sludge-membrane aerated biofilm reactor (H-MABR) for nitrogen removal from low COD/N interflow: A pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122038. [PMID: 39098075 DOI: 10.1016/j.jenvman.2024.122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
There are a large number of simple landfills in hilly areas, and the results of previous studies have shown that pollutants in landfills can spread via interflow and cause surface source pollution. The hybrid activated sludge-membrane aerated bioreactor (H-MABR) developed in a previous study can be used for the treatment of interflow with a low chemical oxygen demand (COD)/total nitrogen (TN) ratio, and it has been shown to be effective in laboratory simulations. To investigate the effectiveness of the H-MABR in treating interflow around landfills in real-world applications, an in-situ pilot-scale evaluation of the effectiveness of H-MABR operation was conducted at a landfill. The results indicated that the removal efficiencies of COD, TN, and ammonia nitrogen in interflow by H-MABR were 87.1 ± 6.0%, 80.9 ± 7.9%, and 97.9 ± 1.4%, respectively. The removal rate of TN reached 148.6-205.6 g-N/m3·d. The concentration of each pollutant in the effluent was in accordance with China's "Standard for pollution control on the landfill site of municipal solid waste (GB16889-2008)," wherein the COD, TN, and ammonia nitrogen of effluent should be less than 100 mg/L, 40 mg/L, and 25 mg/L, respectively. The results of community composition analysis and PICRUSt analysis based on 16S rRNA gene sequencing showed that there were different dominant functional bacteria between the inner and outer rings, but functional genes involved in the nitrification-denitrification, assimilated nitrate reduction, and dissimilated nitrate reduction pathway were all detected. Furthermore, except for the nitrite oxidation gene narG, the abundance of which did not significantly differ between the inner and outer rings, the abundance of the other functional genes was higher in the outer ring than in the inner ring. An economic evaluation revealed that the operation cost of interflow treatment by the H-MABR was as low as ¥2.78/m3; thus, the H-MABR is a shock-load-resistant and cost-effective technology for interflow treatment.
Collapse
Affiliation(s)
- Hengyi Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Wenjie Ye
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Boxuan Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Yun Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Guotao Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Xiaofeng Gao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
2
|
Lopes CL, de Assis TM, Passig FH, Lima Model AND, Mees JBR, Cervantes FJ, Gotardo JT, Gomes SD. Nitrogen removal from poultry slaughterhouse wastewater in anaerobic-anoxic-aerobic combined reactor: Integrated effect of recirculation rate and hydraulic retention time. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114162. [PMID: 34861504 DOI: 10.1016/j.jenvman.2021.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to assess the nitrogen removal from slaughterhouse wastewater in an anaerobic-anoxic-aerobic combined reactor, evaluating the integrated effect of recirculation rate and hydraulic retention time. The recirculation of the liquid phase from the aerobic zone to the anoxic zone was applied to promote the denitrification through the use of endogenous electron donors. Three recirculation rates (R: 0.5, 1 and 2) and three hydraulic retention times (14, 11 and 8 h) were applied. The operation of the reactor was divided into 3 steps (I, II, and III) according to the factors evaluated (recirculation rate and HRT), to achieve operational conditions that would allow satisfactory performance in the different compartments of the reactor. During the experiment the reactor was fed with average total nitrogen (TN) and chemical oxygen demand (COD) of 65 mg L-1 and 580 mg L-1, respectively. The denitrification efficiency (theoretical) and kinetics parameters for COD decay were calculated. The highest performance was verified in the Step III (R = 2) and HRT of 11 h with NH4+ and TN removals of 84% and 65%, respectively. The TN removal efficiency (65%) was considered satisfactory, since the theoretical denitrification efficiency expected for this condition (R = 2) is 67%, without addition of an external carbon source. The lowest nitrification efficiency values were obtained in HRT of 8 h in the Step I and II (R = 0.5 and 1, respectively), indicating that the nitrification time (3 h - aerobic phase) may be the limiting factor in this HRT. The COD removal efficiency was high in all assays (>95%). The values of the kinetic degradation constants of organic matter were close for all recirculation rates, and the highest values were recorded for the HRT of 8 h and R = 1 and R = 2 (-0.48 and -0.43, respectively).
Collapse
Affiliation(s)
- Carla Limberger Lopes
- Center of Exact and Technological Sciences, Western Paraná State University (UNIOESTE), Universitária Street, 2069, 85819-210, Cascavel, PR, Brazil
| | - Tatiane Martins de Assis
- Center of Exact and Technological Sciences, Western Paraná State University (UNIOESTE), Universitária Street, 2069, 85819-210, Cascavel, PR, Brazil.
| | - Fernando Hermes Passig
- Academic Department of Chemistry and Biology, Federal Technological University of Paraná (UTFPR), Deputado Heitor Alencar Furtado Street, 4900, Ecoville, 81280-340, Curitiba, PR, Brazil
| | - Adriana Neres de Lima Model
- Center of Exact and Technological Sciences, Western Paraná State University (UNIOESTE), Universitária Street, 2069, 85819-210, Cascavel, PR, Brazil
| | - Juliana Bortoli Rodrigues Mees
- Academic Department of Biological and Environmental Sciences, Federal Technological University of Paraná (UTFPR), Avenida Brasil, 4232, Parque Independência, 85884-000, Medianeira, PR, Brazil
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico
| | - Jackeline T Gotardo
- Center of Exact and Technological Sciences, Western Paraná State University (UNIOESTE), Universitária Street, 2069, 85819-210, Cascavel, PR, Brazil
| | - Simone Damasceno Gomes
- Center of Exact and Technological Sciences, Western Paraná State University (UNIOESTE), Universitária Street, 2069, 85819-210, Cascavel, PR, Brazil
| |
Collapse
|
3
|
Investigating the Electrocoagulation Treatment of Landfill Leachate by Iron/Graphite Electrodes: Process Parameters and Efficacy Assessment. WATER 2022. [DOI: 10.3390/w14020205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Electrocoagulation is a widely used method for treating leachate since it is cost effective and eco-friendly. In the present study, the electrocoagulation process was employed to remove chemical oxygen demand (COD), NH4+, total dissolved solids (TDS), total suspended solids (TSS), turbidity, and color from landfill leachate. At first, lime was used as a pretreatment, then the Fe/Gr and Ti/PbO2/steel electrodes were used, and the optimum electrode was selected. Afterwards, the effects of some variables, including pH, current density, temperature, the inter-electrode distance, and the type of electrolyte were investigated. Results showed that COD, NH4+, TSS, TDS, electrical conductivity (EC), turbidity, color, and pH of effluent pretreatment chemical reached 22,371, 385, 884, 21,820 (mg/L), 13.8 (ms/cm3), 1355 (NTU), 8500 (TCU) and 10, respectively (the removal efficiency was 0, 20.37, 32.4, 61.99, 59.18, and 56.6 percent). With the Fe/Gr electrode, the optimal condition was observed as follows: pH of 7.5, current density of 64 mA/cm2, inter-electrode distance was equal to 1.5 cm, temperature at 20 °C, and retention time 2–4 h. Overall, the electrocoagulation with the Fe/Gr electrode was a suitable technology for landfill leachate treatment due to its effectiveness for the removal of both COD and NH4+, with advantageous performance indicators.
Collapse
|
4
|
How Waterlogged Conditions Influence the Nitrogen Dynamics in a Soil–Water–Plant System: Implications for Wetland Restoration. WATER 2021. [DOI: 10.3390/w13212957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growing populations and industrialization have led to increased nitrogen (N) loads in wetland ecosystems. A micro-constructed wetland planted with Lythrum salicaria L. to treat artificial wastewater was used to investigate the short-term variations in the plant biomass and dynamics of total nitrogen (TN) content. Our results showed that the biomass of Lythrum salicaria L. rapidly increased during the experiment due to their extensive root system and vigorous spread, and waterlogged conditions had little effect on the relationship between biomass and the TN content in soil and effluent. Under different waterlogged conditions, the TN removal rates in the water were all greater than 60%, providing a reference for the waterlogged conditions used in wetland eutrophication restoration.
Collapse
|
5
|
Daly I, Jellali S, Mehri I, Reis MAM, Freitas EB, Oehmen A, Chatti A. Phosphorus and ammonium removal characteristics from aqueous solutions by a newly isolated plant growth-promoting bacterium. ENVIRONMENTAL TECHNOLOGY 2020; 41:2603-2617. [PMID: 30689524 DOI: 10.1080/09593330.2019.1575917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
An indigenous plant growth-promoting bacterium isolated from Peganum Harmala rhizosphere in the arid ecosystem was found to solubilize and accumulate phosphates. This isolate was identified as Pseudomonas sp. (PHR6) by partial 16S rRNA gene sequence analysis. Controlled batch experiments on nutrients removal by this isolate in mineral medium showed relatively high efficiencies after 24 h of aerobic incubation with average values of 117.59 and 335.38 mg gVSS-1 for phosphorus (P-PO4) and nitrogen (N-NH4), respectively. Furthermore, the strain performed heterotrophic nitrification ranging from 48.81% to 84.24% of the total removed nitrogen. On the other hand, the experimental results showed that a short idle period (24 h) significantly enhanced P accumulation (up to 95%) and N assimilation (up to 50%) of the total removed amounts. However, long idle period (20 days) revealed firstly aerobic phosphorous release phase succeeded by another removal one within 24 h of incubation. Overall, the idle treatment enhances P removal efficiency from the mineral liquid medium without significant effects on N-NH4 removal performance. The isolated strain showed also significant nutrient removal ability from synthetic wastewater providing an accumulated fraction of 98% from the total removed phosphorus amount. This study highlights the potential contribution of the selected rhizobacterium PHR6 to both environmental nutrient recycling and pollution control especially regarding phosphorus.
Collapse
Affiliation(s)
- Imen Daly
- Wastewaters and Environment Laboratory (LabEauE), Water Research and Technologies Center, Technopark of Borj-Cedria, Soliman, Tunisia
- Faculty of Sciences of Tunis, Tunis El Manar University, El-Manar II, Tunisia
| | - Salah Jellali
- Wastewaters and Environment Laboratory (LabEauE), Water Research and Technologies Center, Technopark of Borj-Cedria, Soliman, Tunisia
| | - Ines Mehri
- Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Water Research and Technologies Center, Technopark of Borj-Cedria, Soliman, Tunisia
| | - Maria A M Reis
- Faculty of Sciences and Technology, Chemistry Department, FCT-UNL, Caparica, Portugal
| | - Elisabete B Freitas
- Faculty of Sciences and Technology, Chemistry Department, FCT-UNL, Caparica, Portugal
| | - Adrian Oehmen
- Faculty of Sciences and Technology, Chemistry Department, FCT-UNL, Caparica, Portugal
| | - Abdelwaheb Chatti
- Laboratory of Treatment and Valorization of Water Rejects (LTVRH), Water Research and Technologies Center, Technopark of Borj-Cedria, Soliman, Tunisia
| |
Collapse
|
6
|
Thakrar FJ, Singh SP. Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba TATA-5. BIORESOURCE TECHNOLOGY 2019; 278:150-158. [PMID: 30685619 DOI: 10.1016/j.biortech.2019.01.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
A highly thermostable protease from a haloalkaliphilic actinobacteria was immobilized employing 5 different approaches on 24 carriers. On immobilization, the activation energy and deactivation rate constant decreased, which makes the immobilized protease favourable for applications. Similarly, pH and temperature stability was enhanced, while the Vmax and Km changed upon immobilization. The immobilized enzyme had greater stability in various metal ions and detergents. The structural topography of the immobilized enzyme elucidated by the FTIR suggested the function of aliphatic amines, alkenes and esters since amide I and II bands were affected. Noticeable decrease in the Amide A band suggests interaction between the immobilization carriers and -NH groups of the protease molecule. The suitability of the immobilized protease was established by designing a continuous flow enzyme bioreactor, displaying the enzyme half-life of 916.15 min at 60 °C. The enzyme reactor was highly efficient in the treatment of the municipal and dairy wastewater.
Collapse
Affiliation(s)
- Foram J Thakrar
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|