1
|
Dharmapriya TN, Chang KL, Huang PJ. Valorization of Glucose-Derived Humin as a Low-Cost, Green, Reusable Adsorbent for Dye Removal, and Modeling the Process. Polymers (Basel) 2023; 15:3268. [PMID: 37571162 PMCID: PMC10422260 DOI: 10.3390/polym15153268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Glucose can be isomerized into fructose and dehydrated into key platform biochemicals, following the "bio-refinery concept". However, this process generates black and intractable substances called humin, which possess a polymeric furanic-type structure. In this study, glucose-derived humin (GDH) was obtained by reacting D-glucose with an allylamine catalyst in a deep eutectic solvent medium, followed by a carbonization step. GDH was used as a low-cost, green, and reusable adsorbent for removing cationic methylene blue (MB) dye from water. The morphology of carbonized GDH differs from pristine GDH. The removal efficiencies of MB dye using pristine GDH and carbonized GDH were 52% and 97%, respectively. Temperature measurements indicated an exothermic process following pseudo-first-order kinetics, with adsorption behavior described by the Langmuir isotherm. The optimum parameters were predicted using the response surface methodology and found to be a reaction time of 600 min, an initial dye concentration of 50 ppm, and a GDH weight of 0.11 g with 98.7% desirability. The MB dye removal rate optimized through this model was 96.85%, which was in good agreement with the experimentally obtained value (92.49%). After 10 cycles, the MB removal rate remained above 80%, showcasing the potential for GDH reuse and cost-effective wastewater treatment.
Collapse
Affiliation(s)
- Thakshila Nadeeshani Dharmapriya
- Institute of Environmental Engineering, College of Engineering, National Sun Yat-sen University, Kaohsiung 80432, Taiwan; (T.N.D.); (K.-L.C.)
| | - Ken-Lin Chang
- Institute of Environmental Engineering, College of Engineering, National Sun Yat-sen University, Kaohsiung 80432, Taiwan; (T.N.D.); (K.-L.C.)
| | - Po-Jung Huang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 320317, Taiwan
| |
Collapse
|
2
|
Cheng KY, Acuña CR, Kaksonen AH, Esslemont G, Douglas GB. Treatment of neutral gold mine drainage by sequential in situ hydrotalcite precipitation, and microbial sulfate and cyanide removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149613. [PMID: 34438154 DOI: 10.1016/j.scitotenv.2021.149613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/22/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
This study proposed and validated a method integrating in situ hydrotalcite precipitation (Virtual Curtain™ (VC) technology) with bioprocess for treating a cyanide (CN)-augmented (ca. 5 mg-CN L-1) sulfate-laden neutral mine drainage, from a waste rock dump (WD2) of an Australian gold mine. Efficacies of various carbon (C) sources (ethanol, lactate, and two natural substrates; Eucalyptus wood sawdust (EW) and Typha biomass (TB)) for promoting microbial reduction in both: CN-augmented WD2 water and VC-treated CN-augmented WD2 water were assessed in a 60-days microcosms study at 30 °C. The microcosms were monitored over time for pH, redox potential, dissolved hydrogen sulfide, chloride, nitrite, nitrate, sulfate, phosphate, biogas production, dissolved organic carbon, total dissolved nitrogen, and dissolved CN. The VC treatment removed a range of metals (Mg, Ni and Zn) and metalloid Se from the CN-augmented WD2 water to below detection. Other elements substantially reduced in concentration included Ba, F, Si and U. However, the VC treatment did not remove substantial nitrate, sulfate or CN. Microcosm trials revealed that the indigenous microbial community in WD2 could effectively denitrify and reduce sulfate, with TB was the most efficient C source for promoting sulfate and CN removal; whereas, EW facilitated only marginally higher sulfate reduction compared with controls. The highest sulfate reduction rate (76 g-SO42- m-3 d-1) was achieved with VC-treated water amended with TB, indicating that VC pre-treatment was beneficial. Further, all treatments amended with external C, facilitated 100% removal of dissolved CN after 60 days, whereas only partial (65%) CN removal was recorded in the control. Overall, the proposed integrated method appears a viable option for treating neutral gold mine drainage.
Collapse
Affiliation(s)
- Ka Yu Cheng
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia.
| | | | - Anna H Kaksonen
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| | | | - Grant B Douglas
- CSIRO Land and Water, 147 Underwood Avenue, Floreat, WA 6014, Australia
| |
Collapse
|
3
|
Costa HPDS, da Silva MGC, Vieira MGA. Application of alginate extraction residue for Al(III) ions biosorption: a complete batch system evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51826-51840. [PMID: 33993448 DOI: 10.1007/s11356-021-14333-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The residue derived from the alginate extraction from S. filipendula was applied for the biosorption of aluminum from aqueous medium. The adsorptive capacity of the residue (RES) was completely evaluated in batch mode. The effect of pH, contact time, initial concentration, and temperature was assessed through kinetic, equilibrium, and thermodynamic studies. The biosorbent was characterized prior and post-Al biosorption by N2 physisorption, Hg porosimetry, He pycnometry, and thermogravimetry analyses. Equilibrium was achieved in 60 min. Kinetics obeys pseudo-second-order model at aluminum higher concentrations. Isotherms followed Freundlich model at low temperature (293.15 K) and D-R or Langmuir model at higher temperatures (303 and 313 K). Data modeling indicated the occurrence of both chemical and physical interactions in the aluminum adsorption mechanism using RES. The maximum adsorption capacity obtained was 1.431 mmol/g at 293 K. The biosorption showed a spontaneous, favorable, and exotherm character. A simplified batch design was performed, indicating that the residue is a viable biosorbent, achieving high percentages of removal using low biomass dosage.
Collapse
Affiliation(s)
- Heloisa Pereira de Sá Costa
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Av., 500, Campinas, São Paulo, 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Av., 500, Campinas, São Paulo, 13083-852, Brazil
| | - Melissa Gurgel Adeodato Vieira
- Department of Processes and Products Design, School of Chemical Engineering, University of Campinas, Albert Einstein Av., 500, Campinas, São Paulo, 13083-852, Brazil.
| |
Collapse
|
4
|
Zhang J, Yin H, Wang H, Xu L, Samuel B, Chang J, Liu F, Chen H. Molecular structure-reactivity correlations of humic acid and humin fractions from a typical black soil for hexavalent chromium reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2975-2984. [PMID: 30463148 DOI: 10.1016/j.scitotenv.2018.10.165] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Different soil humus fractions are structurally distinct from each other molecularly, however, the relationship between their microscopic molecular structures and the macroscopic reduction of Cr(VI) is still unknown, especially for the humin fraction. In this study, different humus fractions (HA, humic acid; HMi, humin linked to iron oxides; HMc, humin linked to clay; and HMr, humin residue) were sequentially extracted from a typical black soil and well characterized. It was found that HA, HMi and HMc were the same type of humus with similar molecular structures, while HMr was structurally different from the other fractions with a high cellulose content. The removal rate of Cr(VI) in solution decreased with progressive humus fractionation, namely, HA > HMi > HMc > HMr. Based on the two-dimensional correlation spectroscopic analysis (2DCOS) of the FTIR data, the changing functional groups of all humus fractions during reacting with Cr(VI) followed a similar order: carboxyl > phenol > hydroxyl > methyl > methylene. According to the correlation analysis, Cr(VI) reduction rates by different humus fractions were mainly determined by the content of phenol (R2 = 0.99) instead of carboxyl (R2 = 0.28). Except for HMr, the Cr(VI) reduction rates of different humus fractions were also positively correlated with surface and bulk polarity (R2 = 0.98 and 0.99) but not with aromaticity or aliphaticity (R2 = 0.21).
Collapse
Affiliation(s)
- Jia Zhang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, China
| | - Huilin Yin
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, China
| | - Hui Wang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, China
| | - Lin Xu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, China
| | - Barnie Samuel
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, China
| | - Jingjie Chang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, China
| | - Fei Liu
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, China.
| | - Honghan Chen
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
5
|
Rahmanian O, Dinari M, Neamati S. Synthesis and characterization of citrate intercalated layered double hydroxide as a green adsorbent for Ni 2+ and Pb 2+ removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36267-36277. [PMID: 30368699 DOI: 10.1007/s11356-018-3584-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Recently, a considerable attention has been paid on the preparation of layered double hydroxide (LDH) as a green adsorbent. This research presents a study on nickel and lead removal by Ca/Fe layered double hydroxides intercalate with citrate anions (Ca-Fe/LDH-Cit) which was successfully prepared through the co-precipitation and hydrothermal method. The as-synthesized Ca-Fe/LDH-Cit was characterized by various techniques including FT-IR, XRD, TGA, FE-SEM, and TEM techniques. The maximum uptake capacities of Ca-Fe/LDH-Cit were 2.26 mg/g for Ni(II) and 61.73 mg/g for Pb(II) inferred from the Langmuir model at the contact time of 30 min and pH of 7. Based on the results, the adsorption and kinetic isotherms were in good agreement with the Langmuir model and the pseudo-second-order equation, respectively. The results suggested that the composite adsorbent has the good ability to remove the Ni2+ and Pb2+ ions from aqueous solutions. The results reveal that the composite adsorbent can be considered as a high-capacity absorbent for Ni(II) and Pb(II) removal and also as a potential candidate for practical applications.
Collapse
Affiliation(s)
- Omid Rahmanian
- Department of Environmental Health, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Sima Neamati
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
6
|
Choong CE, Kim M, Yoon S, Lee G, Park CM. Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.07.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|