1
|
Tay KSJ, See HH. Recent Advances in Dispersive Liquid-Liquid Microextraction for Pharmaceutical Analysis. Crit Rev Anal Chem 2024:1-22. [PMID: 38165816 DOI: 10.1080/10408347.2023.2299280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Sample clean-up and pre-concentration are critical components of pharmaceutical analysis. The dispersive liquid-liquid microextraction (DLLME) technique is widely recognized as the most effective approach for enhancing overall detection sensitivity. While various DLLME modes have been advanced in pharmaceutical analysis, there need to be more discussions on pre-concentration techniques specifically developed for this field. This review presents a comprehensive overview of the different DLLME modes used in pharmaceutical analysis from 2017 to May 2023. The review covers the principles of DLLME, the factors affecting microextraction, the selected applications of different DLLME modes, and their advantages and disadvantages. Additionally, it focuses on multi-extraction strategies employed for pharmaceutical analysis.
Collapse
Affiliation(s)
- Karen Sze Jie Tay
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Hong Heng See
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
2
|
Ghorbani M, Mohammadi P, Keshavarzi M, Ziroohi A, Mohammadi M, Aghamohammadhasan M, Pakseresht M. Developments of Microextraction (Extraction) Procedures for Sample Preparation of Antidepressants in Biological and Water Samples, a Review. Crit Rev Anal Chem 2021; 53:1285-1312. [PMID: 34955046 DOI: 10.1080/10408347.2021.2018648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Antidepressants are an important class of drugs to treat various types of depression. The determination of antidepressants is crucial in biological samples to control adverse effects in humans and study pharmacokinetics and bioavailability. Direct measurement of antidepressants in biological and water samples is a considerable challenge for analysts due to their low concentration, the high matrix effects of real samples, and the presence of metabolites of these drugs in biological samples. The challenge leads to using sample preparation processes as a critical step in determining antidepressants. Extraction and microextraction procedures have been widely utilized as sample preparation procedures for these drugs. The purposes of extraction or microextraction methods for antidepressant medications are to preconcentrate the analyte, reduce the matrix effects, increase the selectivity of the procedures, and convert the sample to a suitable format for introducing it into detection systems. In the review, the various extraction and microextraction methods of these drugs in biological, real water, and wastewater samples were investigated. The theory of each technique was briefly addressed to understand the features and factors affecting each method. The extraction and microextraction methods were classified based on their application for antidepressants, and the advantages and disadvantages of each technique were reviewed. The new developments to overcome the limitations of each procedure were discussed. The investigation indicated the number of applications of liquid-phase microextraction for extracting antidepressants has been almost equal to that of solid-phase microextraction.
Collapse
Affiliation(s)
- Mahdi Ghorbani
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parisa Mohammadi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Majid Keshavarzi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Faculty of Health, Sabzevar, Iran
| | - Aliakbar Ziroohi
- Department of biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Morteza Mohammadi
- School of Medicine, Sechenov University of Medical Sciences, Moscow, Russia
| | | | - Maryam Pakseresht
- Department of Chemistry, Faculty of Arts and Sciences, Near East University, Nicosia, Cyprus
| |
Collapse
|
3
|
Mohammadi P, Masrournia M, Es’haghi Z, Pordel M. Hollow fiber coated Fe3O4@Maleamic acid-functionalized graphene oxide as a sorbent for stir bar sorptive extraction of ibuprofen, aspirin, and venlafaxine in human urine samples before determining by gas chromatography–mass spectrometry. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02185-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Cabarcos-Fernández P, Tabernero-Duque MJ, Álvarez-Freire I, Bermejo-Barrera AM. Determination of Seven Antidepressants in Pericardial Fluid by Means of Dispersive Liquid-Liquid Microextraction (DLLME) and Gas Chromatography-Mass Spectrometry (GC/MS). J Anal Toxicol 2021; 46:bkab003. [PMID: 33410888 PMCID: PMC8866815 DOI: 10.1093/jat/bkab003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 01/27/2023] Open
Abstract
Although blood is often used to detect and quantify the presence of drugs, there are some instances where samples obtained from other biological matrices, like pericardial fluid (PF), are necessary since adequate blood samples may not be available. PF is an epicardial transudate, which contains plasma components that include toxicological substances making this sample useful when blood samples are not available. This fluid is a well preserved postmortem sample and can easily be collected in larger amounts without significant contamination, compared with other body fluids. Although studies involving PF began around the 1980's, the adequacy of such fluid as a biological matrix has been poorly investigated. Antidepressants are frequently detected in postmortem samples from forensic cases. Nowadays, they constitute some of the most commonly prescribed drugs worldwide. A total of seven antidepressants (venlafaxine, mirtazapine, olanzapine, paroxetine, sertraline, fluoxetine and citalopram) were evaluated in this study. A new extraction method involving dispersive liquid-liquid microextraction (DLLME) is presented in which chloroform and acetonitrile are determined to be the best extraction and dispersing solvents. The experimental design was achieved using StatGraphics 18. The Response Surface Methodology enabled us to know the optimal volume for the two solvents used in the DLLME. The detection technique used was gas chromatography-mass spectrometry (GC-MS) with electron impact ionization as ionization source. A temperature gradient has been used and the total chromatographic separation time was 19.43 min. Validation results met the international validation guidances (FDA). Under the optimal condition, the method offered good validation parameters showing a new efficient, simple, rapid, and sensitive method. The analytical method was applied to thirty-one pericardial fluid samples. Twenty-one samples were positive with concentrations between 0.19 and 8.48 µg/mL. Venlafaxine and olanzapine were the antidepressants most frequently found.
Collapse
Affiliation(s)
- P Cabarcos-Fernández
- Forensic Toxicology Service, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, C/San Francisco s/n, Santiago de Compostela, A Coruña 15782, Spain
| | - M J Tabernero-Duque
- Forensic Toxicology Service, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, C/San Francisco s/n, Santiago de Compostela, A Coruña 15782, Spain
| | - I Álvarez-Freire
- Forensic Toxicology Service, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, C/San Francisco s/n, Santiago de Compostela, A Coruña 15782, Spain
| | - A M Bermejo-Barrera
- Forensic Toxicology Service, Institute of Forensic Sciences, Faculty of Medicine, University of Santiago de Compostela, C/San Francisco s/n, Santiago de Compostela, A Coruña 15782, Spain
| |
Collapse
|
5
|
Dias RA, Sousa ER, Silva GS, Silva LK, Freitas AS, Lima DL, Sousa ÉM. Ultrasound-assisted dispersive liquid-liquid microextraction for determination of enrofloxacin in surface waters. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Hu W, Pang M, Li L, Yu W, Mou Y, Wang H, Lian Y. High-Throughput Speciation of Triethyl Tin, Tributyl Tin, and Triphenyl Tin in Environmental Water by Ultra-Performance Liquid Chromatography – Tandem Mass Spectrometry (UPLC-MS/MS). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1833341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Wenling Hu
- Jiaxing Eco-Environmental Monitoring Center of Zhejiang, Jiaxing, Zhejiang, China
| | - Ming Pang
- Jiaxing Qiuyuan Testing Technology Company, Jiaxing, Zhejiang, China
| | - Li Li
- Jiaxing Eco-Environmental Monitoring Center of Zhejiang, Jiaxing, Zhejiang, China
| | - Weijuan Yu
- Jiaxing Eco-Environmental Monitoring Center of Zhejiang, Jiaxing, Zhejiang, China
| | - Yuan Mou
- Jiaxing Qiuyuan Testing Technology Company, Jiaxing, Zhejiang, China
| | - Hongmei Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuan Lian
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
7
|
Soltanmohammadi F, Afshar Moghadam M, Khoubnasabjafari M, Jouyban A. Development of Salt Induced Liquid–Liquid Extraction Combined with Amine Based Deep Eutectic Solvent-Dispersive Liquid–Liquid Microextraction; An Efficient Analytical Method for Determination of Three Anti-Seizures in Urine Samples. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Fatemeh Soltanmohammadi
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Borzoei M, Zanjanchi MA, Sadeghi-Aliabadi H, Saghaie L. Trace Determination of Iron in Real Waters and Fruit Juice Samples Using Rapid Method: Optimized Dispersive Liquid-Liquid Microextraction with Synthesized Nontoxic Chelating Agent. Biol Trace Elem Res 2019; 192:319-329. [PMID: 30810875 DOI: 10.1007/s12011-019-01662-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/04/2019] [Indexed: 01/24/2023]
Abstract
The purpose of this research was to optimize a new method for preconcentration and determination of trace iron concentrations in aqueous solutions. For this purpose, a newly synthesized ligand, 3-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) benzoic acid (3-OH-3-MOPBA), was used in the dispersive liquid-liquid microextraction (DLLME) method coupled with UV-vis spectroscopy. The experiments considering input variables of extractant volume, disperser volume, salt concentration, and pH were designed with the aid of central composite design (CCD). The results were analyzed using response surface methodology (RSM). The limit of detection (LOD) was found to be 4.0 μg L-1 under the optimized conditions. A calibration curve with a good linearity (R2 = 0.9986) was obtained over the concentration range of 15-800 μg L-1. The relative standard deviations (RSD) were found to be around 2.1% (n = 7). The main advantages of the developed method are simple application, environment friendly, short time, and low cost which makes this method to be applied routinely for measuring iron in various water samples.
Collapse
Affiliation(s)
- Mohammad Borzoei
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Mohammad Ali Zanjanchi
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41335-1914, Iran.
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| |
Collapse
|
9
|
Analysis of Endocrine-Disrupting Compounds from Cheese Samples Using Pressurized Liquid Extraction Combined with Dispersive Liquid–Liquid Microextraction Followed by High-Performance Liquid Chromatography. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01487-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Garcia-Alonso S, Perez-Pastor RM. Organic Analysis of Environmental Samples Using Liquid Chromatography with Diode Array and Fluorescence Detectors: An Overview. Crit Rev Anal Chem 2019; 50:29-49. [PMID: 30925844 DOI: 10.1080/10408347.2019.1570461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This overview is focused to provide an useful guide of the families of organic pollutants that can be determined by liquid chromatography operating in reverse phase and ultraviolet/fluorescence detection. Eight families have been classified as the main groups to be considered: carbonyls, carboxyls, aromatics, phenols, phthalates, isocyanates, pesticides and emerging. The references have been selected based on analytical methods used in the environmental field, including both the well-established procedures and those more recently developed.
Collapse
|