1
|
Macromolecules assessment from spent biomass during phycoremediation of pollutants from coke-oven wastewater: A prospective approach for production of value added products. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Gerulová K, Kucmanová A, Sanny Z, Garaiová Z, Seiler E, Čaplovičová M, Čaplovič Ľ, Palcut M. Fe 3O 4-PEI Nanocomposites for Magnetic Harvesting of Chlorella vulgaris, Chlorella ellipsoidea, Microcystis aeruginosa, and Auxenochlorella protothecoides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1786. [PMID: 35683642 PMCID: PMC9182367 DOI: 10.3390/nano12111786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
Magnetic separation of microalgae using magnetite is a promising harvesting method as it is fast, reliable, low cost, energy-efficient, and environmentally friendly. In the present work, magnetic harvesting of three green algae (Chlorella vulgaris, Chlorella ellipsoidea, and Auxenochlorella protothecoides) and one cyanobacteria (Microcystis aeruginosa) has been studied. The biomass was flushed with clean air using a 0.22 μm filter and fed CO2 for accelerated growth and faster reach of the exponential growth phase. The microalgae were harvested with magnetite nanoparticles. The nanoparticles were prepared by controlled co-precipitation of Fe2+ and Fe3+ cations in ammonia at room temperature. Subsequently, the prepared Fe3O4 nanoparticles were coated with polyethyleneimine (PEI). The prepared materials were characterized by high-resolution transmission electron microscopy, X-ray diffraction, magnetometry, and zeta potential measurements. The prepared nanomaterials were used for magnetic harvesting of microalgae. The highest harvesting efficiencies were found for PEI-coated Fe3O4. The efficiency was pH-dependent. Higher harvesting efficiencies, up to 99%, were obtained in acidic solutions. The results show that magnetic harvesting can be significantly enhanced by PEI coating, as it increases the positive electrical charge of the nanoparticles. Most importantly, the flocculants can be prepared at room temperature, thereby reducing the production costs.
Collapse
Affiliation(s)
- Kristína Gerulová
- Institute of Integrated Safety, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (K.G.); (A.K.); (Z.S.)
| | - Alexandra Kucmanová
- Institute of Integrated Safety, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (K.G.); (A.K.); (Z.S.)
| | - Zuzana Sanny
- Institute of Integrated Safety, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia; (K.G.); (A.K.); (Z.S.)
| | - Zuzana Garaiová
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina F1, 842 48 Bratislava, Slovakia;
| | - Eugen Seiler
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia;
| | - Mária Čaplovičová
- Centre for Nanodiagnostics of Materials, Faculty of Materials Science and Technology, Slovak University of Technology, Vazovova 5, 812 43 Bratislava, Slovakia;
| | - Ľubomír Čaplovič
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia;
| | - Marián Palcut
- Institute of Materials Science, Faculty of Materials Science and Technology, Slovak University of Technology, J. Bottu 25, 917 24 Trnava, Slovakia;
| |
Collapse
|
3
|
Sheikh T, Hamid B, Baba Z, Iqbal S, Yatoo A, Fatima S, Nabi A, Kanth R, Dar K, Hussain N, Alturki AI, Sunita K, Sayyed R. Extracellular polymeric substances in psychrophilic cyanobacteria: A potential bioflocculant and carbon sink to mitigate cold stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Kajla S, Kumari R, Nagi GK. Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions. Arch Microbiol 2022; 204:149. [DOI: 10.1007/s00203-021-02677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
|
5
|
Bio-conversion of CO 2 into biofuels and other value-added chemicals via metabolic engineering. Microbiol Res 2021; 251:126813. [PMID: 34274880 DOI: 10.1016/j.micres.2021.126813] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/24/2022]
Abstract
Carbon dioxide (CO2) occurs naturally in the atmosphere as a trace gas, which is produced naturally as well as by anthropogenic activities. CO2 is a readily available source of carbon that in principle can be used as a raw material for the synthesis of valuable products. The autotrophic organisms are naturally equipped to convert CO2 into biomass by obtaining energy from sunlight or inorganic electron donors. This autotrophic CO2 fixation has been exploited in biotechnology, and microbial cell factories have been metabolically engineered to convert CO2 into biofuels and other value-added bio-based chemicals. A variety of metabolic engineering efforts for CO2 fixation ranging from basic copy, paste, and fine-tuning approaches to engineering and testing of novel synthetic CO2 fixing pathways have been demonstrated. In this paper, we review the current advances and innovations in metabolic engineering for bio-conversion of CO2 into bio biofuels and other value-added bio-based chemicals.
Collapse
|
6
|
Haberle I, Hrustić E, Petrić I, Pritišanac E, Šilović T, Magić L, Geček S, Budiša A, Blažina M. Adriatic cyanobacteria potential for cogeneration biofuel production with oil refinery wastewater remediation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Kumar R, Ghosh AK, Pal P. Synergy of biofuel production with waste remediation along with value-added co-products recovery through microalgae cultivation: A review of membrane-integrated green approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134169. [PMID: 31505365 DOI: 10.1016/j.scitotenv.2019.134169] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Development of advanced biofuels such as bioethanol and biodiesel from renewable resources is critical for the earth's sustainable management and to slow down the global climate change by partial replacement of gasoline and diesel in the transport sector. Being a diverse group of aquatic micro-organisms, algae are the most prominent resources on the planet, distributed in an aquatic system, a potential source of bioenergy, biomass and secondary metabolites. Microalgae-based biofuel production is widely accepted as non-food fuel sources and better choice for achieving goals of incorporation of a clean fuel source into the transportation sector. The present review article provides a comprehensive literature survey as well as a novel approach on the application of microalgae for their simultaneous cultivation and bioremediation of high nutrient containing wastewater. In addition to that, merits and demerits of different existing conventional techniques for microalgae culture reactors, harvesting of algal biomass, oil recovery, use of different catalysts for transesterification reactions and other by-products recovery have been discussed and compared with the membrane-based system to find out the best optimal conditions for higher biomass as well as lipid yield. This article also deals with the use of a tailor-made membrane in an appropriate module that can be used in upstream and downstream processes during algal-based biofuels production. Such membrane-integrated system has the potential of low-cost and eco-friendly separation, purification and concentration enrichment of biodiesel as well as other valuable algal by-products which can bring the high degree of process intensification for scale-up at the industrial stage.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemistry, The University of Burdwan, 713104, India.
| | - Alak Kumar Ghosh
- Department of Chemistry, The University of Burdwan, 713104, India
| | - Parimal Pal
- Environment and Membrane Technology Laboratory, Department of Chemical Engineering, National Institute of Technology Durgapur 713209, India
| |
Collapse
|
8
|
Mistry AN, Upendar G, Singh S, Chakrabarty J, Bandyopadhyay G, Ghanta KC, Dutta S. Sequestration of CO 2 using microorganisms and evaluation of their potential to synthesize biomolecules. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1577453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Avnish Nitin Mistry
- Department of Earth & Environmental Studies, National Institute of Technology Durgapur, Durgapur, India
| | - Ganta Upendar
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Sunita Singh
- Department of Chemistry, National Institute of Technology Durgapur, Durgapur, India
| | | | - Gautam Bandyopadhyay
- Department of Management Studies, National Institute of Technology Durgapur, Durgapur, India
| | - Kartik Chandra Ghanta
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India
| | - Susmita Dutta
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|