1
|
Lu X, Qiu S, Li Z, Ge S. Pathways, challenges, and strategies for enhancing anaerobic production of short-chain and medium-chain carboxylic acids from algal slurry derived from wastewater. BIORESOURCE TECHNOLOGY 2024; 413:131528. [PMID: 39321935 DOI: 10.1016/j.biortech.2024.131528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/28/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Algal slurry (AS) generated from microalgae-based wastewater treatment processes holds significant potential for carboxylic acids production through anaerobic digestion (AD), which have emerged as promising products due to their high energy density, great economic value, and versatile applications. A comprehensive analysis of the pathways and optimization strategies for producing short-chain (SCCAs) and medium-chain (MCCAs) carboxylic acids using AS substrates is presented in this review. It begins by introducing and comparing two types of microalgae-based wastewater treatment processes: the microalgae process and the microalgal-bacterial consortia process. Afterwards, the review systematically examines the metabolic pathways involved in SCCAs and MCCAs production using AS substrates. Moreover, pretreatment strategies for enhancing the release of organic matter are critically discussed. Ultimately, specific emphasis is placed on addressing technical challenges and discussing future perspectives. This review provides a deeper understanding of the mechanisms and strategies involved in carboxylic acids production from wastewater-generated AS.
Collapse
Affiliation(s)
- Xiyang Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zimu Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
2
|
Lacroux J, Llamas M, Dauptain K, Avila R, Steyer JP, van Lis R, Trably E. Dark fermentation and microalgae cultivation coupled systems: Outlook and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161136. [PMID: 36587699 DOI: 10.1016/j.scitotenv.2022.161136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The implementation of a sustainable bio-based economy is considered a top priority today. There is no doubt about the necessity to produce renewable bioenergy and bio-sourced chemicals to replace fossil-derived compounds. Under this scenario, strong efforts have been devoted to efficiently use organic waste as feedstock for biohydrogen production via dark fermentation. However, the technoeconomic viability of this process needs to be enhanced by the valorization of the residual streams generated. The use of dark fermentation effluents as low-cost carbon source for microalgae cultivation arises as an innovative approach for bioproducts generation (e.g., biodiesel, bioactive compounds, pigments) that maximizes the carbon recovery. In a biorefinery context, after value-added product extraction, the spent microalgae biomass can be further valorised as feedstock for biohydrogen production. This integrated process would play a key role in the transition towards a circular economy. This review covers recent advances in microalgal cultivation on dark fermentation effluents (DFE). BioH2 via dark fermentation processes and the involved metabolic pathways are detailed with a special focus on the main aspects affecting the effluent composition. Interesting traits of microalgae and current approaches to solve the challenges associated to the integration of dark fermentation and microalgae cultivation are also discussed.
Collapse
Affiliation(s)
- Julien Lacroux
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Mercedes Llamas
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France; Instituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de Olavide, Edificio 46., Ctra. de Utrera km. 1, 41013 Sevilla, Spain
| | - Kevin Dauptain
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Romina Avila
- Chemical, Biological and Environmental Engineering Department, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | | | - Robert van Lis
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France
| | - Eric Trably
- LBE, Univ Montpellier, INRAE, 102 avenue des Etangs, F-11100 Narbonne, France.
| |
Collapse
|
3
|
Zhang L, Yang J, Wu B, Liu J, Xu X, Wu W, Zhuang J, Li H, Huang T. Enhanced VFAs production from microalgal hydrolytic acidification with ultrasonic-alkali pretreatment. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
4
|
Enhancement of Carbon Conversion and Value-Added Compound Production in Heterotrophic Chlorella vulgaris Using Sweet Sorghum Extract. Foods 2022; 11:foods11172579. [PMID: 36076765 PMCID: PMC9455686 DOI: 10.3390/foods11172579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
High-cost carbon sources are not economical or sustainable for the heterotrophic culture of Chlorella vulgaris. In order to reduce the cost, this study used sweet sorghum extract (SE) and its enzymatic hydrolysate (HSE) as alternative carbon sources for the heterotrophic culture of Chlorella vulgaris. Under the premise of the same total carbon concentration, the value-added product production performance of Chlorella vulgaris cultured in HSE (supplemented with nitrogen sources and minerals) was much better than that in the glucose medium. The conversion rate of the total organic carbon and the utilization rate of the total nitrogen were both improved in the HSE system. The biomass production and productivity using HSE reached 2.51 g/L and 0.42 g/L/d, respectively. The production of proteins and lipids using HSE reached 1.17 and 0.35 g/L, respectively, and the production of chlorophyll-a, carotenoid, and lutein using HSE reached 30.42, 10.99, and 0.88 mg/L, respectively. The medium cost using HSE decreased by 69.61% compared to glucose. This study proves the feasibility and practicability of using HSE as a carbon source for the low-cost heterotrophic culture of Chlorella vulgaris.
Collapse
|
5
|
Llamas M, Greses S, Tomás-Pejó E, González-Fernández C. Tuning microbial community in non-conventional two-stage anaerobic bioprocess for microalgae biomass valorization into targeted bioproducts. BIORESOURCE TECHNOLOGY 2021; 337:125387. [PMID: 34134053 DOI: 10.1016/j.biortech.2021.125387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Unspecific microorganisms consortia are normally used in anaerobic biodegradation of solid wastes. However, these consortia can be tuned to optimally obtain determined bioproducts. In this study, high value-added products and biogas were obtained via an innovative two-stage anaerobic bioprocess from microalgae biomass. The anaerobic fermentation (AF) entailed the production of short-chain fatty acids (SCFAs) and subsequently, only the solid spent of AF effluent was valorized for methane production via conventional anaerobic digestion (AD). Applied conditions in AF (25 °C, HRT 8 days) favored Firmicutes predominance (64%) enabling a conversion efficiency of 32.1% g SCFAs-COD/g CODin. Opposite, a wider microbial biodiversity was determined in the AD reactor (35 °C, HRT 20 days), being mainly composed by Firmicutes (28.6%), Euryarchaeota (17.7%) and Proteobacteria (15.3%). AD of the AF-solid spent reached 168.9 mL CH4 /g CODin. Strikingly, operational conditions imposed mediated a microbial specialization that maximized product output.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Silvia Greses
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Madrid, Spain
| | | |
Collapse
|
6
|
Kim S, Quiroz-Arita C, Monroe EA, Siccardi A, Mitchell J, Huysman N, Davis RW. Application of attached algae flow-ways for coupling biomass production with the utilization of dilute non-point source nutrients in the Upper Laguna Madre, TX. WATER RESEARCH 2021; 191:116816. [PMID: 33476801 DOI: 10.1016/j.watres.2021.116816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study is to determine the potential for an attached algae flow-way system to efficiently produce algal biomass in estuarine surface waters by utilizing dilute non-point source nutrients from local urban, industrial, and agricultural discharges into the Upper Laguna Madre, Corpus Christi, Texas. The study was conducted over the course of two years to establish seasonal base-line biomass productivity and composition for bioproducts applications, and to identify key environmental factors and flow-way cohorts impacting biomass production. For the entire cultivation period, continuous ash-free biomass production at 4 to 10 g/m2/day (corresponding to nutrient recovery at 300 to 500 mg of nitrogen/m2/day and 15 to 30 mg of phosphorus/m2/day) was successfully achieved without system restart. Upon start-up, a latency period was observed which indicates roles for species succession from relatively low productivity, high ash content pioneer periphytic culture composed primarily of benthic diatoms from the source waters to higher productivity, reduced ash content, and more resilient culture mainly composed of filamentous chlorophyta, Ulva lactuca. Principal Component Analysis (PCA) was used to identify environmental factors driving biomass production, and machine learning (ML) models were constructed to assess the predictive capability of the data set for system performance using the local multi-season environmental variations. Environmental datasets were segregated for ML training, validation, and testing using three methods: regression tree, ensemble regression, and Gaussian process regression (GPR). The predicted ash-free biomass productivity using ML models resulted in root-squared-mean-errors (RSME) from 1.78 to 1.86 g/m2/day, and R2 values from 0.67 to 0.75 using different methods. The greatest contributor to net productivity was total solar irradiation, followed by air temperature, salinity, and pH. The results of the study should be useful as a decision-making tool to application of attached algae flow-ways for biomass production while preventing algal blooms in the environment.
Collapse
Affiliation(s)
- Sungwhan Kim
- Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Ave, Livermore, CA 94550, United States
| | - Carlos Quiroz-Arita
- Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Ave, Livermore, CA 94550, United States
| | - Eric A Monroe
- Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Ave, Livermore, CA 94550, United States
| | - Anthony Siccardi
- Department of Biology, Georgia Southern University, 4324 Old Register Road, Statesboro, GA 30460, United States
| | - Jacqueline Mitchell
- Department of Fisheries and Mariculture, Texas A&M-Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX 78412, United States
| | - Nathan Huysman
- Texas A&M AgriLife Research, 100 Centeq Building A, 1500 Research Parkway, College Station, TX 77843, United States
| | - Ryan W Davis
- Department of Bioresource and Environmental Security, Sandia National Laboratories, 7011 East Ave, Livermore, CA 94550, United States.
| |
Collapse
|
7
|
Kim M, Jung S, Lee DJ, Lin KYA, Jeon YJ, Rinklebe J, Klinghoffer NB, Kwon EE. Biodiesel synthesis from swine manure. BIORESOURCE TECHNOLOGY 2020; 317:124032. [PMID: 32829119 DOI: 10.1016/j.biortech.2020.124032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrates that the biodiesel (BD) from swine manure (SM) could be a promising way for large scale generation of biofuel. Also, the economic and environmental benefits of SM derived BD were evaluated. Transesterification of lipid contents extracted from the collected SM had low BD yield (14.2 wt%) using H2SO4 catalyst due to high acid value and impurities. However, thermo-chemical non-catalytic transesterification with a porous material showed 94.7 wt% yield of BD from the lipid in SM. Considering the current population of swine, the annual production of BD from SM was estimated. The SM derived BD could cover 19.7 and 46.8 wt% of BD currently produced in both Korea and the USA with the economic benefits of up to $96 million and $2.1 billion, respectively. The proposed approach also can save vast arable lands needed to cultivate oil-bearing feedstocks for BD production.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Sungyup Jung
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Dong-Jun Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea; Department of Animal Environment, National Institute of Animal Science, Wanju 55365, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young Jae Jeon
- Department of Microbiology, Pukyong National University, Busan 48513, South Korea
| | - Jörg Rinklebe
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea; Soil- and Groundwater-Management, Institute of Foundation Engineering, Water and Waste Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Naomi B Klinghoffer
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London N6A 5B9, Ontario, Canada
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
8
|
Magdalena JA, Greses S, González-Fernández C. Anaerobic degradation of protein-rich biomass in an UASB reactor: Organic loading rate effect on product output and microbial communities dynamics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 274:111201. [PMID: 32798846 DOI: 10.1016/j.jenvman.2020.111201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic degradation of enzymatically pretreated Chlorella vulgaris was aimed in an upflow anaerobic sludge blanket reactor (UASB) to evaluate the organic loading rate (OLR) effect on biomass valorization. Low OLRs resulted in high methane yields (171 mL CH4/g CODin) at low hydraulic retention time (HRT of 6 days). Firmicutes (35-43%), Bacteroidetes (17-18%) and Euryarchaeota (11%) dominated at low OLRs, promoting methanogenic activity. On the contrary, the highest OLRs resulted in low methane yield (86 mL CH4/gCODin) with a concomitant short-chain fatty acids (SCFAs) accumulation of 37% SCFAs-COD/CODin. The highest OLR decreased UASB reactor biodiversity, hampering Euryarchaeota population development (2.5%) and boosting Firmicutes (55%) and Proteobacteria (14%). These results demonstrated the suitability of UASB reactor configuration to reach high bioprocess efficiency for both, biogas and SCFAs production, with lower energetic and area requirements than those normally needed in continuous stirred tank reactors.
Collapse
Affiliation(s)
- Jose Antonio Magdalena
- Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Silvia Greses
- Biotechnology Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
| | | |
Collapse
|
9
|
|
10
|
Naresh Kumar A, Chatterjee S, Hemalatha M, Althuri A, Min B, Kim SH, Venkata Mohan S. Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. BIORESOURCE TECHNOLOGY 2020; 296:122315. [PMID: 31706890 DOI: 10.1016/j.biortech.2019.122315] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
The present study is designed to evaluate the potential of deoiled algal biomass (DAB) residue as an alternative resource for the production of bioethanol and biopolymers in a biorefinery approach. Hybrid pretreatment method resulted in higher sugar solubilization (0.590 g/g DAB) than the corresponding individual physicochemical (0.481 g/g DAB) and enzymatic methods (0.484 g/g DAB). Subsequent utilization of sugars from hybrid pretreatment for bioethanol using Saccharomyces cerevisiaeresulted in maximum bioethanol production at pH 5.5 (0.145 ± 0.008 g/g DAB) followed by pH 5.0 (0.122 ± 0.004 g/g DAB) and pH 6.0 (0.102 ± 0.002 g/g DAB). The experiments for biopolymer (PHB: polyhydroxybutyrate) production resulted in 0.43 ± 0.20 g PHB/g DCW. Extracted polymer on NMR and FT-IR analysis showed the presence of PHB. Exploration of DAB as an alternative renewable resource for multiple biobased products supports sustainability and also enables entirety use of DAB by addressing the DAB-residue allied disposal issues.
Collapse
Affiliation(s)
- A Naresh Kumar
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - Sulogna Chatterjee
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - Avanthi Althuri
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India; Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
11
|
Venkata Mohan S, Hemalatha M, Chakraborty D, Chatterjee S, Ranadheer P, Kona R. Algal biorefinery models with self-sustainable closed loop approach: Trends and prospective for blue-bioeconomy. BIORESOURCE TECHNOLOGY 2020; 295:122128. [PMID: 31563289 DOI: 10.1016/j.biortech.2019.122128] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Microalgae due to its metabolic versatility have received a focal attention in the biorefinery and bioeconomy context. Microalgae products have broad and promising application potential in the domain of renewable fuels/energy, nutraceutical, pharmaceuticals and cosmetics. Biorefining of microalgal biomass in a circular loop with an aim to maximize resource recovery is being considered as one of the sustainable option that will have both economical and environmental viability. The expansive scope of microalgae cultivation with self-sustainability approach was discussed in this communication in the framework of blue-bioeconomy. Microalgae based primary products, cultivation strategies, valorization of microalgae biomass for secondary products and integrated biorefinery models for the production of multi-based products were discussed. The need and prospect of self-sustainable models in closed loop format was also elaborated.
Collapse
Affiliation(s)
- S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India.
| | - Manupati Hemalatha
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - Debkumar Chakraborty
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Sulogna Chatterjee
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - Palle Ranadheer
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - Rajesh Kona
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| |
Collapse
|
12
|
Volatile Fatty Acids Production from Microalgae Biomass: Anaerobic Digester Performance and Population Dynamics during Stable Conditions, Starvation, and Process Recovery. Molecules 2019; 24:molecules24244544. [PMID: 31842312 PMCID: PMC6943514 DOI: 10.3390/molecules24244544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 11/25/2022] Open
Abstract
Disturbances in anaerobic digestion (AD) negatively impact the overall reactor performance. These adverse effects have been widely investigated for methane generation. However, AD recently appeared as a potential technology to obtain volatile fatty acids (VFAs) and thus, the impact of process disturbances must be evaluated. In this sense, microbial response towards a starvation period of two weeks was investigated resulting in a conversion of organic matter into VFAs of 0.39 ± 0.03 COD-VFAs/CODin. However, the lack of feeding reduced the yield to 0.30 ± 0.02 COD-VFAs/CODin. Microbial analysis revealed that the starvation period favored the syntrophic acetate-oxidizing bacteria coupled with hydrogenotrophic methanogens. Finally, the system was fed at 9 g COD/Ld resulting in process recovery (0.39 ± 0.04 COD-VFAs/CODin). The different microbiome obtained at the end of the process was proved to be functionally redundant, highlighting the AD robustness for VFAs production.
Collapse
|
13
|
Magdalena JA, González-Fernández C. Microalgae Biomass as a Potential Feedstock for the Carboxylate Platform. Molecules 2019; 24:molecules24234404. [PMID: 31810301 PMCID: PMC6930456 DOI: 10.3390/molecules24234404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 11/16/2022] Open
Abstract
Volatile fatty acids (VFAs) are chemical building blocks for industries, and are mainly produced via the petrochemical pathway. However, the anaerobic fermentation (AF) process gives a potential alternative to produce these organic acids using renewable resources. For this purpose, waste streams, such as microalgae biomass, might constitute a cost-effective feedstock to obtain VFAs. The present review is intended to summarize the inherent potential of microalgae biomass for VFA production. Different strategies, such as the use of pretreatments to the inoculum and the manipulation of operational conditions (pH, temperature, organic loading rate or hydraulic retention time) to promote VFA production from different microalgae strains, are discussed. Microbial structure analysis using microalgae biomass as a substrate is pointed out in order to further comprehend the roles of bacteria and archaea in the AF process. Finally, VFA applications in different industry fields are reviewed.
Collapse
|