1
|
Trentalange A, Renzi M, Michelozzi P, Guizzi M, Solimini AG. Association between air pollution and emergency room admission for eye diseases in Rome, Italy: A time-series analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123279. [PMID: 38160774 DOI: 10.1016/j.envpol.2023.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Eye diseases impose a significant burden on health services due to high case numbers. However, exposure to outdoor air pollution is seldom mentioned as potential harmful factor. We conducted a time-series analysis in Rome, Italy, to estimate the association between daily mean concentration of NO2, PM10 and PM2.5 and daily number of emergency room (ER) admissions for a selected cluster of eye diseases from 2006 to 2016. We used Poisson regression adjusted for time trend, population decrease during summer vacations and holidays, day of week, apparent temperature (hot and cold) and daily concentration of nine pollen species. We observed 581,868 ER admissions during the study period. 44.74% of cases were observed in subjects with less than 20 years, 19.50% in 51-65 age category and 13.4% among children (0-14 years). No differences between sexes were recorded. Mean values of pollutant concentrations were 54.75, 31.01 and 18.14 μg/m3 for NO2, PM10 and PM2.5 respectively. The air temperature ranged from -1 °C to 32.5 °C, with a mean value of 16 °C (SD = 6.88). The apparent temperature spaced from -3.58 °C to 34.08 °C (mean = 15.61 °C, SD = 8.5). The highest percent risk increases for 10 μg/m3 increases of the three pollutants were observed at lag0-1 day (1.3%, 0.63-1.98 for PM2.5; 1.03%, 0.56-1.51 for PM10 and 0.6%, 0.13-1.07 for NO2). Risk increased significantly also at lag0 and lag0-5 day for each pollutant. Secondary analyses showed higher effects in the elderly compared to younger subjects. No differences emerged between sexes. The dose response analysis suggested of possible effects on ER admission risk also at low-level concentrations of PM2.5. A strong confounding effect of pollen was not detected. RESULTS: of this study are coherent with previous analyses. Speculation can be done about the biological mechanisms that link air pollution to eye damage.
Collapse
Affiliation(s)
| | - Matteo Renzi
- Department of Epidemiology, Health Authority Service, ASL Rome 1, Rome, Italy
| | - Paola Michelozzi
- Department of Epidemiology, Health Authority Service, ASL Rome 1, Rome, Italy
| | - Marco Guizzi
- ASL RM5, UOC Oculistica, Ospedale San Giovanni Evangelista, Tivoli, (RM), Italy
| | - Angelo Giuseppe Solimini
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
2
|
Chen ZW, Ting YC, Huang CH, Ciou ZJ. Sources-oriented contributions to ozone and secondary organic aerosol formation potential based on initial VOCs in an urban area of Eastern Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164392. [PMID: 37244610 DOI: 10.1016/j.scitotenv.2023.164392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Over the past decades, the pollution of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere has become a major concern worldwide due to their adverse effects on human health, air quality and climate. Volatile organic compounds (VOCs) are crucial precursors of O3 and SOA, but identifying the primary sources of VOCs that contribute to the formation of O3 and SOA has been challenging due to the rapid consumption of VOCs by oxidants in the air. To address this issue, a study was conducted in a Taipei urban area in Taiwan, where the hourly data of 54 VOC species were collected from March 2020 to February 2021 detected by Photochemical Assessment Monitoring Stations (PAMS). The initial mixing ratios of VOCs (VOCsini) were determined by combining the observed VOCs (VOCsobs) and the consumed VOCs resulting from photochemical reactions. Additionally, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) were estimated based on VOCsini. The OFP derived from VOCsini (OFPini) was found to exhibit a strong correlation with O3 mixing ratios (R2 = 0.82), whereas the OFP obtained from VOCsobs did not show such a correlation. Isoprene, toluene and m,p-xylene were the top three species contributing to OFPini, while toluene and m,p-xylene were the top two contributors to SOAFPini. Positive matrix factorization analysis revealed that biogenic, consumer/household products, and industrial solvents were the major contributors to OFPini in four seasons, and SOAFPini mostly came from consumer/household products and industrial solvents. This study highlights the importance of considering photochemical loss caused by different VOCs reactivity in the atmosphere when evaluating OFP and SOAFP. Moreover, it emphasizes the need to prioritize controlling the sources emitting the dominant VOC precursors of O3 and SOA to effectively alleviate the scenarios of elevated O3 and particulate matter.
Collapse
Affiliation(s)
- Zih-Wun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chuan-Hsiu Huang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zih-Jhe Ciou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Investigation of airborne trace element pollution in Hai Phong city (Vietnam) using Barbula Indica moss and neutron activation analysis. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Tudu P, Gaine T, Mahanty S, Mitra S, Bhattacharyya S, Chaudhuri P. Impact of COVID‐19 lockdown on the elemental profile of PM
10
present in the ambient aerosol of an educational institute in Kolkata, India. ENVIRONMENTAL QUALITY MANAGEMENT 2022. [PMCID: PMC9111065 DOI: 10.1002/tqem.21862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reduction in air pollution level was prime observation during COVID‐19 lockdown globally. Here, the study was conducted to assess the impact of lockdown on the elemental profile of PM10 in ambient aerosol to quantify the elemental variation. To quantify the variation, phase‐wise sampling of air pollutants was carried out using the gravimetric method for PM10, while NO2 and SO2 were estimated through the chemiluminescence and fluorescent spectrometric method respectively. The elemental constituents of PM10 were carried out using an Inductively Coupled Plasma Optical Emission Spectrometer and their source apportionment was carried out using the Positive Matrix Factorization model. The results showed that PM10, NO2 and SO2 reduced by 86.97%, 83.38%, and 88.60% respectively during the lockdown sampling phase. The highest mean elemental concentration reduction was found in Mn (97.47%) during the lockdown. The inter‐correlation among the pollutants exhibited a significant association indicating that they originate from the same source. The metals like Mn and Cu were found at a higher concentration during the lockdown phase corresponding to vehicular emissions. The comparative analysis of the elemental profile of PM10 concluded that the lockdown effectuated in reduction of the majority of elements present in an aerosol enveloping metropolitan like Kolkata.
Collapse
Affiliation(s)
- Praveen Tudu
- Department of Environmental Science University of Calcutta Kolkata West Bengal India
| | - Tanushree Gaine
- Department of Environmental Science University of Calcutta Kolkata West Bengal India
- Department of Environmental Studies New Alipore College Kolkata West Bengal India
| | - Shouvik Mahanty
- Department of Environmental Science University of Calcutta Kolkata West Bengal India
| | - Sayantani Mitra
- Department of Environmental Science University of Calcutta Kolkata West Bengal India
| | | | - Punarbasu Chaudhuri
- Department of Environmental Science University of Calcutta Kolkata West Bengal India
| |
Collapse
|
5
|
Zhang JB, Rong YM, Yin QF, Zhang P, Zhao LR, Chen CL. Spatiotemporal Variation and Influencing Factors of TSP and Anions in Coastal Atmosphere of Zhanjiang City, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042030. [PMID: 35206218 PMCID: PMC8871972 DOI: 10.3390/ijerph19042030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022]
Abstract
Water-soluble anions and suspended fine particles have negative impacts on ecosystems and human health, which is a current research hotspot. In this study, coastal suburb, coastal urban area, coastal tourist area, and coastal industrial area were explored to study the spatiotemporal variation and influencing factors of water-soluble anions and total suspended particles (TSP) in Zhanjiang atmosphere. In addition, on-site monitoring, laboratory testing, and analysis were used to identify the difference of each pollutant component at the sampling stations. The results showed that the average concentrations of Cl−, NO3−, SO42−, PO43−, and TSP were 29.8 μg/m3, 19.6 μg/m3, 45.6 μg/m3, 13.5 μg/m3, and 0.28 mg/m3, respectively. The concentration of Cl−, NO3−, PO43−, and atmospheric TSP were the highest in coastal urban area, while the concentration of SO42− was the highest in coastal industrial area. Moreover, there were significantly seasonal differences in the concentration of various pollutants (p < 0.05). Cl− and SO42− were high in summer, and NO3− and TSP were high in winter. Cl−, SO42−, PO43−, and TSP had significant correlations with meteorological elements (temperature, relative humidity, atmospheric pressure, and wind speed). Besides, the results showed the areas with the most serious air pollution were coastal urban area and coastal industrial area. Moreover, the exhaust emissions from vehicles, urban enterprise emissions, and seawater evaporation were responsible for the serious air pollution in coastal urban area. It provided baseline information for the coastal atmospheric environment quality in Zhanjiang coastal city, which was critical to the mitigation strategies for the emission sources of air pollutants in the future.
Collapse
Affiliation(s)
- Ji-Biao Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.-B.Z.); (Y.-M.R.); (Q.-F.Y.); (L.-R.Z.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong Zhanjiang), Zhanjiang 524088, China
| | - Yu-Mei Rong
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.-B.Z.); (Y.-M.R.); (Q.-F.Y.); (L.-R.Z.)
| | - Qi-Feng Yin
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.-B.Z.); (Y.-M.R.); (Q.-F.Y.); (L.-R.Z.)
| | - Peng Zhang
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.-B.Z.); (Y.-M.R.); (Q.-F.Y.); (L.-R.Z.)
- Correspondence: ; Tel.: +86-0759-2383300
| | - Li-Rong Zhao
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (J.-B.Z.); (Y.-M.R.); (Q.-F.Y.); (L.-R.Z.)
| | - Chun-Liang Chen
- Analytical and Testing Centre, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
6
|
Terzaghi E, Posada-Baquero R, Di Guardo A, Ortega-Calvo JJ. Microbial degradation of pyrene in holm oak (Quercus ilex) phyllosphere: Role of particulate matter in regulating bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147431. [PMID: 33964783 DOI: 10.1016/j.scitotenv.2021.147431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
In this study we first measured the mineralization of pyrene on leaves of urban holm oak (Quercus ilex) by autochthonous microorganisms and an inoculated PAH degrading bacterium (i.e., Mycobacterium gilvum), selected as a model phyllosphere species, as well as the leaf-water (KLW) and leaf-air (KLA) partition coefficients for this chemical. Mineralization was investigated in two different experimental systems in terms of leaf and microorganism environment. Additionally, the influence on pyrene partitioning and mineralization when particulate matter (PM) was present on the leaf surface or removed was studied. Mineralization of 14C-labeled pyrene by autochthonous microorganisms was lower than 1% after approximately two weeks, while M. gilvum mineralized 5% to 17% of pyrene. These extents corresponded to mineralization half-lives that ranged between ~30 to ~200 days. We proposed that PM present at the leaf surface reduced the accumulation of pyrene by inner compartments (cuticle) distantly located from microbial cells and enhanced the bioaccessibility of pyrene, speeding up microbial activity and therefore mineralization. These results highlight that plant-phyllosphere microorganism interaction is more complex than currently established and deserves additional studies to further comprehend the air purification ecosystem service of phyllosphere microorganisms.
Collapse
Affiliation(s)
- Elisa Terzaghi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy.
| | - Rosa Posada-Baquero
- Instituto de Recursos Naturales y Agrobiologıá de Sevilla (IRNAS-CSIC), E-41080 Seville, Spain
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Josè-J Ortega-Calvo
- Instituto de Recursos Naturales y Agrobiologıá de Sevilla (IRNAS-CSIC), E-41080 Seville, Spain
| |
Collapse
|
7
|
Althuwaynee OF, Pokharel B, Aydda A, Balogun AL, Kim SW, Park HJ. Spatial identification and temporal prediction of air pollution sources using conditional bivariate probability function and time series signature. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:709-726. [PMID: 33159165 DOI: 10.1038/s41370-020-00271-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Accurate identification of distant, large, and frequent sources of emission in cities is a complex procedure due to the presence of large-sized pollutants and the existence of many land use types. This study aims to simplify and optimize the visualization mechanism of long time-series of air pollution data, particularly for urban areas, which is naturally correlated in time and spatially complicated to analyze. Also, we elaborate different sources of pollution that were hitherto undetectable using ordinary plot models by leveraging recent advances in ensemble statistical approaches. The high performing conditional bivariate probability function (CBPF) and time-series signature were integrated within the R programming environment to facilitate the study's analysis. Hourly air pollution data for the period between 2007 to 2016 is collected using four air quality stations, (ca0016, ca0058, ca0054, and ca0025), situated in highly urbanized locations that are characterized by complex land use and high pollution emitting activities. A conditional bivariate probability function (CBPF) was used to analyze the data, utilizing pollutant concentration values such as Sulfur dioxide (SO2), Nitrogen oxides (NO2), Carbon monoxide (CO) and Particulate Matter (PM10) as a third variable plotted on the radial axis, with wind direction and wind speed variables. Generalized linear model (GLM) and sensitivity analysis are applied to verify and visualize the relationship between Air Pollution Index (API) of PM10 and other significant pollutants of GML outputs based on quantile values. To address potential future challenges, we forecast 3 months PM10 values using a Time Series Signature statistical algorithm with time functions and validated the outcome in the 4 stations. Analysis of results reveals that sources emitting PM10 have similar activities producing other pollutants (SO2, CO, and NO2). Therefore, these pollutants can be detected by cross selection between the pollution sources in the affected city. The directional results of CBPF plot indicate that ca0058 and ca0054 enable easier detection of pollutants' sources in comparison to ca0016 and ca0025 due to being located on the edge of industrial areas. This study's CBPF technique and time series signature analysis' outcomes are promising, successfully elaborating different sources of pollution that were hitherto undetectable using ordinary plot models and thus contribute to existing air quality assessment and enhancement mechanisms.
Collapse
Affiliation(s)
- Omar F Althuwaynee
- Department of Energy and Mineral Resources Engineering, Sejong University, 209 Neudong-ro Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Badal Pokharel
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Ali Aydda
- Department of Geology, Faculty of Sciences, Ibn Zohr University, B.P 8106, 80000, Agadir, Morocco
| | - Abdul-Lateef Balogun
- Geospatial Analysis and Modelling (GAM) Research Laboratory, Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS (UTP), Seri Iskandar, 32610, Perak, Malaysia.
| | - Sang-Wan Kim
- Department of Energy and Mineral Resources Engineering, Sejong University, 209 Neudong-ro Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Hyuck-Jin Park
- Department of Energy and Mineral Resources Engineering, Sejong University, 209 Neudong-ro Gwangjin-gu, Seoul, 05006, Republic of Korea
| |
Collapse
|
8
|
Indoor Air Pollution with Fine Particles and Implications for Workers’ Health in Dental Offices: A Brief Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13020599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
(1) Background: Indoor air pollution can affect the well-being and health of humans. Sources of indoor pollution with particulate matter (PM) are outdoor particles and indoor causes, such as construction materials, the use of cleaning products, air fresheners, heating, cooking, and smoking activities. In 2017, according to the Global Burden of Disease study, 1.6 million people died prematurely because of indoor air pollution. The health effects of outdoor exposure to PM have been the subject of both research and regulatory action, and indoor exposure to fine particles is gaining more and more attention as a potential source of adverse health effects. Moreover, in critical situations such as the current pandemic crisis, to protect the health of the population, patients, and staff in all areas of society (particularly in indoor environments, where there are vulnerable groups, such as people who have pre-existing lung conditions, patients, elderly people, and healthcare professionals such as dental practitioners), there is an urgent need to improve long- and short-term health. Exposure to aerosols and splatter contaminated with bacteria, viruses, and blood produced during dental procedures performed on patients rarely leads to the transmission of infectious agents between patients and dental health care staff if infection prevention procedures are strictly followed. On the other hand, in the current circumstances of the pandemic crisis, dental practitioners could have an occupational risk of acquiring coronavirus disease as they may treat asymptomatic and minimally symptomatic patients. Consequently, an increased risk of SARS-CoV-2 infection could occur in dental offices, both for staff that provide dental healthcare and for other patients, considering that many dental procedures produce droplets and dental aerosols, which carry an infectious virus such as SARS-CoV-2. (2) Types of studies reviewed and applied methodology: The current work provides a critical review and evaluation, as well as perspectives concerning previous studies on health risks of indoor exposure to PM in dental offices. The authors reviewed representative dental medicine literature focused on sources of indoor PM10 and PM2.5 (particles for which the aerodynamic diameter size is respectively less than 10 and 2.5 μm) in indoor spaces (paying specific attention to dental offices) and their characteristics and toxicological effects in indoor microenvironments. The authors also reviewed representative studies on relations between the indoor air quality and harmful effects, as well as studies on possible indoor viral infections acquired through airborne and droplet transmission. The method employed for the research illustrated in the current paper involved a desk study of documents and records relating to occupational health problems among dental health care providers. In this way, it obtained background information on both the main potential hazards in dentistry and infection risks from aerosol transmission within dental offices. Reviewing this kind of information, especially that relating to bioaerosols, is critical for minimizing the risk to dental staff and patients, particularly when new recommendations for COVID-19 risk reduction for the dental health professional community and patients attending dental clinics are strongly needed. (3) Results: The investigated studies and reports obtained from the medical literature showed that, even if there are a wide number of studies on indoor human exposure to fine particles and health effects, more deep research and specific studies on indoor air pollution with fine particles and implications for workers’ health in dental offices are needed. As dental practices are at a higher risk for hazardous indoor air because of exposure to chemicals and microbes, the occupational exposures and diseases must be addressed, with special attention being paid to the dental staff. The literature also documents that exposure to fine particles in dental offices can be minimized by putting prevention into practice (personal protection barriers such as masks, gloves, and safety eyeglasses) and also keeping indoor air clean (e.g., high-volume evacuation, the use of an air-room-cleaning system with high-efficiency particulate filters, and regularly maintaining the air-conditioning and ventilation systems). These kinds of considerations are extremely important as the impact of indoor pollution on human health is no longer an individual issue, with its connections representing a future part of sustainability which is currently being redefined. These kinds of considerations are extremely important, and the authors believe that a better situation in dentistry needs to be developed, with researchers in materials and dental health trying to understand and explain the impact of indoor pollution on human health.
Collapse
|
9
|
Guan Y, Wang L, Wang S, Zhang Y, Xiao J, Wang X, Duan E, Hou L. Temporal variations and source apportionment of volatile organic compounds at an urban site in Shijiazhuang, China. J Environ Sci (China) 2020; 97:25-34. [PMID: 32933737 DOI: 10.1016/j.jes.2020.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 05/22/2023]
Abstract
Shijiazhuang, the city with the worst air quality in China, is suffering from severe ozone pollution in summer. As the key precursors of ozone generation, it is necessary to control the Volatile Organic Compounds (VOCs) pollution. To have a better understanding of the pollution status and source contribution, the concentrations of 117 ambient VOCs were analyzed from April to August 2018 in an urban site in Shijiazhuang. Results showed that the monthly average concentration of total VOCs was 66.27 ppbv, in which, the oxygenated VOCs (37.89%), alkanes (33.89%), and halogenated hydrocarbons (13.31%) were the main composite on. Eight major sources were identified using Positive Matrix Factorization modeling with an accurate VOCs emission inventory as inter-complementary methods revealed that the petrochemical industry (26.24%), other industrial sources (15.19%), and traffic source (12.24%) were the major sources for ambient VOCs in Shijiazhuang. The spatial distributions of major industrial activities emissions were identified by using geographic information statistics system, which illustrated the VOCs was mainly from the north and southeast of Shijiazhuang. The inverse trajectory analysis using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and Potential Source Contribution Function (PSCF) clearly demonstrated the features of pollutant transport to Shijiazhuang. These findings can provide references for local governments regarding control strategies to reduce VOCs emissions.
Collapse
Affiliation(s)
- Yanan Guan
- Scshool of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, Shijiazhuang 050018, China
| | - Lei Wang
- Scshool of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shujuan Wang
- Hebei Province Environmental Monitoring Center, Shijiazhuang 050018, China
| | - Yihao Zhang
- Scshool of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jieying Xiao
- Scshool of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiaoli Wang
- Hebei Province Environmental Emergency and Heavy Pollution Weather Warning Center, Shijiazhuang 050018, China
| | - Erhong Duan
- Scshool of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; National and Local Joint Engineering Center of Volatile Organic Compounds & Odorous Pollution Control Technology, Shijiazhuang 050018, China.
| | - Li'an Hou
- Logistics Science and Technology Research Institute of Rocket Army, Beijing 100011, China
| |
Collapse
|
10
|
Nghiem TD, Nguyen TTT, Nguyen TTH, Ly BT, Sekiguchi K, Yamaguchi R, Pham CT, Ho QB, Nguyen MT, Duong TN. Chemical characterization and source apportionment of ambient nanoparticles: a case study in Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30661-30672. [PMID: 32472507 DOI: 10.1007/s11356-020-09417-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
PM0.1 has been believed to have adverse short- and long-term effects on human health. However, the information of PM0.1 that is needed to fully evaluate its influence on human health and environment is still scarce in many developing countries. This is a comprehensive study on the levels, chemical compositions, and source apportionment of PM0.1 conducted in Hanoi, Vietnam. Twenty-four-hour samples of PM0.1 were collected during the dry season (November to December 2015) at a mixed site to get the information on mass concentrations and chemical compositions. Multiple linear regression analysis was utilized to investigate the simultaneous influence of meteorological factors on fluctuations in the daily levels of PM0.1. Multiple linear regression models could explain about 50% of the variations of PM0.1 concentrations, in which wind speed is the most important variable. The average concentrations of organic carbon (OC), elemental carbon (EC), water-soluble ions (Ca2+, K+, Mg2+, Na+, NH4+, Cl-, NO3-, SO42-, C2O42-), and elements (Be, Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba, Tl, Pb, Na, Fe, Mg, K, and Ca) were 2.77 ± 0.90 μg m-3, 0.63 ± 0.28 μg m-3, 0.88 ± 0.39 μg m-3, and 0.05 ± 0.02 μg m-3, accounting for 51.23 ± 9.32%, 11.22 ± 2.10%, 16.28 ± 2.67%, and 1.11 ± 0.94%, respectively. A positive matrix factorization model revealed the contributions of five major sources to the PM0.1 mass including traffic (gasoline and diesel emissions, 46.28%), secondary emissions (31.18%), resident/commerce (12.23%), industry (6.05%), and road/construction (2.92%).
Collapse
Affiliation(s)
- Trung-Dung Nghiem
- School of Environmental Science and Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam.
| | - Thi Thu Thuy Nguyen
- Institute for Environment and Resources, 142 To Hien Thanh, Ward 14, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University - Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| | - Thi Thu Hien Nguyen
- School of Environmental Science and Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam
| | - Bich-Thuy Ly
- School of Environmental Science and Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam
| | - Kazuhiko Sekiguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura, Saitama, Japan
| | - Ryosuke Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura, Saitama, Japan
| | - Chau-Thuy Pham
- Faculty of Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Quoc Bang Ho
- Institute for Environment and Resources, 142 To Hien Thanh, Ward 14, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University - Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Minh-Thang Nguyen
- School of Environmental Science and Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam
| | - Thanh Nam Duong
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| |
Collapse
|
11
|
Assessment of atmospheric deposition of metals in Ha Noi using the moss bio-monitoring technique and proton induced X-ray emission. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07066-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|