1
|
Hashem MS, Magar HS. Creative synthesis of pH-dependent nanoporous pectic acid grafted with acrylamide and acrylic acid copolymer as an ultrasensitive and selective riboflavin electrochemical sensor in real samples. Int J Biol Macromol 2024; 280:136022. [PMID: 39332548 DOI: 10.1016/j.ijbiomac.2024.136022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
In current research, an innovative pectic acid was grafted with poly (acrylamide-co-acrylic acid) [PA-g-poly (AAm-co-AA)] nanoporous membrane using a free radical-mediated grafting copolymerization process. The optimized parameters for the grafting copolymerization reaction such as initiator concentration, monomer concentrations, polymerization reaction time, and temperature were studied. Additionally, the solid content, graft percentage, and conversion were calculated. The unique polymeric membrane was characterized using Fourier-transform infrared spectroscopy (FT-IR), thermal gravimetry (TG), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) supported by energy dispersive X-ray spectroscopy (EDX). The formulated novel PA-g-poly (AAm-co-AA) had a nanoporous structure with a diameter of 113 nm. pH-dependent swelling and biodegradation measurements were also studied. The electrochemical characterizations of PA-g-poly (AAm-co-AA) were conducted through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Furthermore, the screen-printed electrode (SPE) was modified with pure PA and the new generation of its grafted polymeric nanoparticles to detect and quantify the concentration of riboflavin (RF) in real samples using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The modified electrode showed two linear concentration ranges from 0.01 - 2 nM and 2 - 90 nM with low detection limits (LODs) of 0.004 and 0.97 nM, respectively, demonstrating high sensitivity. Besides, the fabricated sensor exhibited more selectivity, simplicity, great reproducibility, repeatability, and good stability. Finally, the PA-g-poly (AAm-co-AA)-modified SPE based sensor was effectively used in real sample analysis of egg yolk, milk, and vitamin B2 drugs with good recovery rates.
Collapse
Affiliation(s)
- M S Hashem
- Polymers and Pigments Department, National Research Centre, Dokki, P.O. Box 12622, Giza, Egypt.
| | - Hend S Magar
- Applied Organic Chemistry Department, National Research Centre, Dokki, P.O. Box 12622, Giza, Egypt.
| |
Collapse
|
2
|
Kong WC, Li CC, Zhang AH, Li XL, Gong QR, Jin BT, Jia XJ, Liu XY, Kang YF. A colorimetric-aptamer-based assay for the determination of enrofloxacin through triggering the aggregation of gold nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7121-7129. [PMID: 39311407 DOI: 10.1039/d4ay01259c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Although enrofloxacin (ENR) is a widely used broad-spectrum antibiotic in veterinary medicine, its residues in animals can pose a risk to human health. Thus, we developed a new method for detecting ENR based on aptamers and AuNPs. In the absence of ENR, the aptamers attached to the surface of the AuNPs via electrostatic interactions to protect the AuNPs from NaCl, and the solution remained red. Conversely, the aptamer bonded with ENR, leading the aptamer to detach from the AuNP surface, and the color of the solution changed from red to blue. Based on this principle, ENR can be qualitatively detected by the naked eye and quantitatively detected by measuring the absorbance ratio at 650 nm and 530 nm. The experimental results showed a good linear relationship within the ENR concentration range of 0-400 nM, with a limit of detection (LOD) of 1.72 nM, which is satisfactory for detection in food safety. Additionally, this method has also been successfully applied to the detection of ENR in tap water, river water, milk, serum and urine, with good recovery rates and RSD values of less than 7%, indicating its great potential for ENR detection in environmental water samples. More importantly, the combination of this method with a smartphone platform provided great convenience for on-site and visual detection of ENR, offering promising applicability prospects.
Collapse
Affiliation(s)
- Wei-Chuang Kong
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Chen-Chen Li
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Ai-Hong Zhang
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Xin-Long Li
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Qian-Rui Gong
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Bing-Tan Jin
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Xiao-Juan Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu-Ying Liu
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Yan-Fei Kang
- College of Laboratory Medicine, Institute of Pathogen Biology and Immunology, Hebei Key Laboratory of Neuropharmacology, Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| |
Collapse
|
3
|
Abedi-Firoozjah R, Alizadeh-Sani M, Zare L, Rostami O, Azimi Salim S, Assadpour E, Azizi-Lalabadi M, Zhang F, Lin X, Jafari SM. State-of-the-art nanosensors and kits for the detection of antibiotic residues in milk and dairy products. Adv Colloid Interface Sci 2024; 328:103164. [PMID: 38703455 DOI: 10.1016/j.cis.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Antibiotic resistance is increasingly seen as a future concern, but antibiotics are still commonly used in animals, leading to their accumulation in humans through the food chain and posing health risks. The development of nanomaterials has opened up possibilities for creating new sensing strategies to detect antibiotic residues, resulting in the emergence of innovative nanobiosensors with different benefits like rapidity, simplicity, accuracy, sensitivity, specificity, and precision. Therefore, this comprehensive review provides pertinent and current insights into nanomaterials-based electrochemical/optical sensors for the detection of antibitic residues (ANBr) across milk and dairy products. Here, we first discuss the commonly used ANBs in real products, the significance of ANBr, and also their binding/biological properties. Then, we provide an overview of the role of using different nanomaterials on the development of advanced nanobiosensors like fluorescence-based, colorimetric, surface-enhanced Raman scattering, surface plasmon resonance, and several important electrochemical nanobiosensors relying on different kinds of electrodes. The enhancement of ANB electrochemical behavior for detection is also outlined, along with a concise overview of the utilization of (bio)recognition units. Ultimately, this paper offers a perspective on the future concepts of this research field and commercialized nanomaterial-based sensors to help upgrade the sensing techniques for ANBr in dairy products.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Alizadeh-Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Zare
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Omid Rostami
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shamimeh Azimi Salim
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran..
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Dabur D, Rana P, Wu HF. Pentacenequinone-Modulated 2D GdSn-PQ Nanosheets as a Fluorescent Probe for the Detection of Enrofloxacin in Biological and Environmental Samples. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27028-27039. [PMID: 38755114 PMCID: PMC11145593 DOI: 10.1021/acsami.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
The fate and effects of fluoroquinolone antibacterial (FQ) on the environment are important since there appears to be a surge in FQ resistance like enrofloxacin (ENR) in both environmental and clinical organisms. Numerous reports indicate that the sensing capabilities of these antibiotics need to be improved. Here, we have investigated the interaction of ENR with our synthesized pentacenequinone-modulated gadolinium-tin (GdSn-PQ) nanosheets and the formation of intermolecular interactions that caused the occurrence of aggregation-induced emission enhancement. The concept for designing hybrid metallic nanosheets comes from the unique features inherited from the parent organic precursor. Due to the distinct interaction between ENR and GdSn-PQ, the interstate conversion (ISC) between GdSn-PQ and ENR induces a significant wavelength shift in photoluminescence (PL), improving reliability, selectivity, and visibility compared to quenching- or AIEE-based methods without peak shifts, allowing for highly sensitive and visually detectable analyses. The fluorescence signal of GdSn-PQ exhibited a linear relationship (R2 = 0.9911), with the added ENR concentrations ranging from 5 to 90 nM, with a detection limit of 0.10 nM. We have demonstrated its potential and wide use in the detection of ENR in biological samples (human urine and blood serum) and environmental samples (tap water and seawater) with a recovery rate of 98- 108%. The current approach has demonstrated that the 2D GdSn-PQ nanosheet is a novel and powerful platform for future biological and environmental studies.
Collapse
Affiliation(s)
- Deepak Dabur
- International
PhD Program for Science, National Sun Yat-Sen
University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-Sen University,
Kaohsiung, 70, Lien-Hai
Road, Kaohsiung 80424, Taiwan
| | - Priyanka Rana
- Department
of Chemistry, National Sun Yat-Sen University,
Kaohsiung, 70, Lien-Hai
Road, Kaohsiung 80424, Taiwan
| | - Hui-Fen Wu
- International
PhD Program for Science, National Sun Yat-Sen
University, Kaohsiung 80424, Taiwan
- Department
of Chemistry, National Sun Yat-Sen University,
Kaohsiung, 70, Lien-Hai
Road, Kaohsiung 80424, Taiwan
- School
of Pharmacy, College of Pharmacy, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
- Institute
of Medical Science and Technology, College of Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute
of Precision Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- School of
Medicine, College of Medicine, National
Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Institute
of BioPharmaceutical Science, National Sun
Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
5
|
Hassan AHA, Zeinhom MMA, Shaban M, Korany AM, Gamal A, Abdel-Atty NS, Al-Saeedi SI. Rapid and sensitive in situ detection of heavy metals in fish using enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124082. [PMID: 38479227 DOI: 10.1016/j.saa.2024.124082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 04/02/2024]
Abstract
Heavy metals have been widely applied in industry, agriculture, and other fields because of their outstanding physics and chemistry properties. They are non-degradable even at low concentrations, causing irreversible harm to the human and other organisms. Therefore, it is of great significance to develop high accuracy and sensitivity as well as stable techniques for their detection. Raman scattering spectroscopy and atomic absorption spectrophotometer (AAS) were used parallelly to detect heavy metal ions such as Hg, Cd, and Pb of different concentrations in fish samples. The concentration of the heavy metals is varied from 5 ppb to 5 ppm. Despite the satisfactory recoveries of AAS, their drawbacks are imperative for an alternative technique. In Raman scattering spectroscopy, the intensities and areas of the characteristic peaks are increased with increasing the concentration of the heavy metals. For Hg concentration ≥ 1 ppm, a slight shift is observed in the peak position. The obtained values of peak intensity and peak area are modeled according to Elvoich, Pseudo-first order, Pseudo-second order, and asymptotic1 exponential model. The best modeling was obtained using the Elovich model followed by the asymptotic1 exponential model. The introduced Raman spectroscopy-based approach for on-site detection of trace heavy metal pollution in fish samples is rapid, low-cost, and simple to implement, increasing its visibility in food safety and industrial applications.
Collapse
Affiliation(s)
- Amal H A Hassan
- Food Safety & Technology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Mohamed M A Zeinhom
- Food Safety & Technology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia; Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ahmed M Korany
- Food Safety & Technology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Gamal
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Nasser S Abdel-Atty
- Food Safety & Technology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sameerah I Al-Saeedi
- Department of Chemistry, Collage of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
6
|
Jiang Y, Wang X, Zhao G, Shi Y, Wu Y. In-situ SERS detection of quinolone antibiotic residues in aquaculture water by multifunctional Fe 3O 4@mTiO 2@Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123056. [PMID: 37385202 DOI: 10.1016/j.saa.2023.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Antibiotic residues in aquaculture environments disrupt the ecosystem balance and pose a potential hazard to human health when entering the food chain. Therefore, ultra-sensitive detection of antibiotics is necessary. In this study, a multifunctional Fe3O4@mTiO2@Ag core-shell nanoparticle (NP), synthesized using a layer-by-layer method, was demonstrated to be useful as an enhanced substrate for in-situ surface-enhanced Raman spectroscopy (SERS) detection of various quinolone antibiotics in aqueous environments. The results showed that the minimum detectable concentrations of the six investigated antibiotics were 1 × 10-9 mol/L (ciprofloxacin, danofloxacin, enoxacin, enrofloxacin, and norfloxacin) and 1 × 10-8 mol/L (difloxacin hydrochloride) under the enrichment and enhancement of Fe3O4@mTiO2@Ag NPs. Additionally, there was a good quantitative relationship between the antibiotics concentrations and SERS peak intensities within a certain detection range. The results of the spiked assay of actual aquaculture water samples showed that the recoveries of the six antibiotics ranged from 82.9% to 113.5%, with relative standard deviations ranging from 1.71% to 7.24%. In addition, Fe3O4@mTiO2@Ag NPs achieved satisfactory results in assisting the photocatalytic degradation of antibiotics in aqueous environments. This provides a multifunctional solution for low concentration detection and efficient degradation of antibiotics in aquaculture water.
Collapse
Affiliation(s)
- Ye Jiang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China.
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
| | - Yinyan Shi
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Yao Wu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
7
|
Wang J, Liu S, Meng Z, Han XX, Cai L, Xu B, Liu R, Song L, He C, Cheng Z, Zhao B. Flexible SERS Biosensor Based on Core-Shell Nanotags for Sensitive and Multiple Detection of T1DM Biomarkers. Anal Chem 2023; 95:14203-14208. [PMID: 37656042 DOI: 10.1021/acs.analchem.3c01791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Sensitive and multiple detection of the biomarkers of type 1 diabetes mellitus (T1DM) is vital to the early diagnosis and clinical treatment of T1DM. Herein, we developed a SERS-based biosensor using polyvinylidene fluoride (PVDF) membranes as a flexible support for the detection of glutamic acid decarboxylase antibodies (GADA) and insulin autoantibodies (IAA). Two kinds of silver-gold core-shell nanotags embedded with Raman probes and attached with GADA or IAA antibodies were synthesized to capture the targets, enabling highly sensitive and highly selective detection of GADA and IAA. The embedded Raman probes sandwiched between silver and gold layers guaranteed spectral stability and reliability. Moreover, the utilization of two Raman probes enables simultaneous and multiplexing detection of both GADA and IAA, improving the detection accuracy for T1DM. The proposed SERS-based method has been proven feasible for clinical sample detection, demonstrating its great potential in sensitive, reliable, and rapid diagnosis of T1DM.
Collapse
Affiliation(s)
- Jihong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Songlin Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhen Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Baofeng Xu
- Department of Stroke Center, First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Rui Liu
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Lina Song
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Chengyan He
- China-Japan Union Hospital of Jilin University, Changchun 130033, P. R. China
| | - Ziyi Cheng
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Zhang X, Tang X, Yu J, Ye H, Zhao L. A novel carbon dots synthesized based on easily accessible biological matrix for the detection of enrofloxacin residues. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Hong J, Su M, Zhao K, Zhou Y, Wang J, Zhou SF, Lin X. A Minireview for Recent Development of Nanomaterial-Based Detection of Antibiotics. BIOSENSORS 2023; 13:327. [PMID: 36979539 PMCID: PMC10046170 DOI: 10.3390/bios13030327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics are considered a new type of organic pollutant. Antibiotic residues have become a global issue due to their harm to human health. As the use of antibiotics is increasing in human life, such as in medicine, crops, livestock, and even drinking water, the accurate analysis of antibiotics is very vital. In order to develop rapid and on-site approaches for the detection of antibiotics and the analysis of trace-level residual antibiotics, a high-sensitivity, simple, and portable solution is required. Meanwhile, the rapid nanotechnology development of a variety of nanomaterials has been achieved. In this review, nanomaterial-based techniques for antibiotic detection are discussed, and some reports that have employed combined nanomaterials with optical techniques or electrochemical techniques are highlighted.
Collapse
Affiliation(s)
- Jiafu Hong
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Mengxing Su
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Kunmeng Zhao
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Yihui Zhou
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingjing Wang
- State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, China
| | - Shu-Feng Zhou
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xuexia Lin
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
10
|
Sarma D, Nath KK, Biswas S, Chetia I, Badwaik LS, Ahmed GA, Nath P. SERS determination and multivariate classification of antibiotics in chicken meat using gold nanoparticle-decorated electrospun PVA nanofibers. Mikrochim Acta 2023; 190:64. [PMID: 36690871 DOI: 10.1007/s00604-023-05640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
The fabrication of SERS substrate by gold nanoparticle-decorated polyvinyl alcohol electrospun nanofibers which has been used to detect trace sensing of two widely used poultry antibiotics doxycycline hydrochloride and enrofloxacin is demonstrated. The performance of the backscattered Raman signals from the proposed SERS substrate has been initially evaluated with two standard Raman active compounds namely malachite green and rhodamine-6G. The limit of detection of the proposed substrate is estimated to be 7.32 nM. Following this, the usability of the proposed SERS substrate has been demonstrated through the detection of the aforementioned antibiotics in chicken meat samples. The presence of antibiotics in chicken meat sample has been validated with the standard analytical tool of liquid chromatography-mass spectrometry and the results were compared with the proposed sensing technique. Further, principal component analysis has been performed to classify the antibiotics that are present in the field-collected meat samples.
Collapse
Affiliation(s)
- Dipjyoti Sarma
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam, Assam, 784028, India
| | - Kaushik K Nath
- Optoelectronics and Photonics Research Laboratory, Tezpur University, Napaam, Assam, 784028, India
| | - Sritam Biswas
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam, Assam, 784028, India
| | - Indrani Chetia
- Department of Food Engineering and Technology, Tezpur University, Napaam, Assam, 784028, India
| | - Laxmikant S Badwaik
- Department of Food Engineering and Technology, Tezpur University, Napaam, Assam, 784028, India
| | - Gazi Ameen Ahmed
- Optoelectronics and Photonics Research Laboratory, Tezpur University, Napaam, Assam, 784028, India
| | - Pabitra Nath
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Napaam, Assam, 784028, India.
| |
Collapse
|
11
|
Ge K, Huang Y, Zhang H. Fabrication of hierarchical β-Bi 2O 3/AuAg microspheres for sensitive, selective and rapid detection of environment pollutants by surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121907. [PMID: 36179562 DOI: 10.1016/j.saa.2022.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we report a novel surface-enhanced Raman spectroscopy (SERS) substrate based on hierarchical β-Bi2O3/Au2Ag2 microspheres for rapid, sensitive and selective detection of environment pollutants including o-dianisidine (o-diASD) and Hg2+ in environmental samples. The sheet-like β-Bi2O3 not only provides large specific surface areas for adsorption of molecules and AuAg, but also emerges as semiconductor matrix with chemical enhancement combined with AuAg with electromagnetic enhancement, making promising SERS activity. Particularly, the β-Bi2O3/Au2Ag2 shows high SERS performance for 4-mercaptobenzoic acid and TMB with minimum detectable concentration of 0.1 μg/L with enhancement factor of 3.1 × 107 and 6.3 × 107, respectively. The density functional theory simulations were further adopted to explain the high SERS activity and selectivity for o-diASD and TMB. Finally, the β-Bi2O3/Au2Ag2 was applied to direct detection of o-diASD, and indirect detection of Hg2+ by TMB marking in environmental samples. The linearity range of 0.5-200.0 and 0.2-500.0 μg/L with limit of detection of 0.2 and 0.07 μg/L for o-diASD and Hg2+ ions can be achieved, respectively. This method provides a novel strategy in designing and fabricating SERS substrates with high performance for rapid, sensitive and accurate analysis of environmental pollutants.
Collapse
Affiliation(s)
- Kun Ge
- College of Tea and Food Technology, Zhangzhou College of Science & Technology, Zhangzhou 363200, China; School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yihong Huang
- College of Tea and Food Technology, Zhangzhou College of Science & Technology, Zhangzhou 363200, China
| | - Hanqiang Zhang
- College of Tea and Food Technology, Zhangzhou College of Science & Technology, Zhangzhou 363200, China; School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
12
|
Ge K, Hu Y, Li G. Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. BIOSENSORS 2022; 12:941. [PMID: 36354450 PMCID: PMC9687977 DOI: 10.3390/bios12110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique with distinguished features of non-destructivity, ultra-sensitivity, rapidity, and fingerprint characteristics for analysis and sensors. The SERS signals are mainly dependent on the engineering of high-quality substrates. Recently, solid SERS substrates with diverse forms have been attracting increasing attention due to their promising features, including dense hot spot, high stability, controllable morphology, and convenient portability. Here, we comprehensively review the recent advances made in the field of solid SERS substrates, including their common fabrication methods, basic categories, main features, and representative applications, respectively. Firstly, the main categories of solid SERS substrates, mainly including membrane substrate, self-assembled substrate, chip substrate, magnetic solid substrate, and other solid substrate, are introduced in detail, as well as corresponding construction strategies and main features. Secondly, the typical applications of solid SERS substrates in bio-analysis, food safety analysis, environment analysis, and other analyses are briefly reviewed. Finally, the challenges and perspectives of solid SERS substrates, including analytical performance improvement and largescale production level enhancement, are proposed.
Collapse
|
13
|
Alhammadi M, Yoo J, Sonwal S, Park SY, Umapathi R, Oh MH, Huh YS. A highly sensitive lateral flow immunoassay for the rapid and on-site detection of enrofloxacin in milk. Front Nutr 2022; 9:1036826. [PMID: 36352902 PMCID: PMC9637957 DOI: 10.3389/fnut.2022.1036826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Enrofloxacin (ENR) is a veterinary antibiotic used to treat bacterial infections in livestock. It chiefly persists in foods and dairy products, which in turn pose severe risks to human health. Hence it is very important to detect the ENR in foods and dairy products to safeguard human health. Herein, we attempted to develop a single-step detection lateral flow immunochromatographic assay (LFIA) using gold nanoparticles (AuNPs) for the rapid and on-site detection of ENR in milk samples. An anti-enrofloxacin monoclonal antibody (ENR-Ab) was conjugated with AuNPs for the specific detection of ENR in milk samples. For sensitivity improvement, many optimization steps were conducted on LFIA test strips. The visual limit of detection (vLOD) was found to be 20 ng/ml with a cut-off value of 50 ng/ml in the milk samples. The obtained LOD and cut-off value were within the safety limit guidelines of the Ministry of food and drug safety, South Korea. The test strip showed negligible cross-reactivity with ENR analogs, and other components of antibiotics, this indicates the high specificity of the LFIA test strip towards ENR. The designed test strip showed good reliability. The visual test results can be seen within 10 min without the need for special equipment. Therefore, the test strip can be employed as a potential detection strategy for the qualitative on-site detection of enrofloxacin in milk samples.
Collapse
Affiliation(s)
- Munirah Alhammadi
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Jingon Yoo
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Sonam Sonwal
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - So Young Park
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
| | - Reddicherla Umapathi
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
- *Correspondence: Reddicherla Umapathi,
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
- Mi-Hwa Oh,
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, NanoBio High-Tech Materials Research Center, Inha University, Incheon, South Korea
- Yun Suk Huh,
| |
Collapse
|
14
|
Synthesis of PVDF membrane loaded with wrinkled Au NPs for sensitive detection of R6G. Talanta 2022; 249:123676. [PMID: 35738206 DOI: 10.1016/j.talanta.2022.123676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
Abstract
A novel SERS membrane is synthesized by combining metal lattice and surface enhanced Raman scattering (SERS) technology. Since R6G is a carcinogenic and harmful pollutant, and traditional detection methods have many drawbacks and have research value, this paper selects R6G as the detection target. The SERS substrates are synthesized by loading Au nanoparticles (Au NPs) on the surface of polyvinylidene fluoride (PVDF) membrane. The Au NPs are synthesized through a controllable hydrothermal method. The synthesized AuNPs are covered by some gold particles, forming a fold pattern. Finally, the synthesized structure is immobilized on the surface of the PVDF membrane by the phase inversion method. It is suggested that the prepared Au NPs@PVDF membrane exhibits adjustable cavity structure, strong plasmon coupling, tunable magnetic plasmon resonance, prominent SERS performances. The prepared Au NPs@PVDF membrane showed sensitive SERS activity, good mechanical strength and reusability, expanding the application field of SERS detection. Overall, this study establishes a novel technique for the synthesis of SERS membrane with excellent SERS property and expands the application field of SERS detection.
Collapse
|
15
|
Phi Van T, Nguy TP, Truong LTN. A highly sensitive impedimetric sensor based on a MIP biomimetic for the detection of enrofloxacin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2195-2203. [PMID: 35612347 DOI: 10.1039/d2ay00192f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The benefits of molecularly imprinted polymer (MIP) technology in creating artificial receptors to replace natural counterparts have piqued the interest of numerous researchers in recent years. We propose a biomimetic enrofloxacin-MIP for enrofloxacin (ENRO) antigen detection using gold nanoparticles (AuNPs) and MIP methodologies in this study. A self-assembled monomer layer of aminothiophenol was used to immobilize a pre-formed complex of the anti-enrofloxacin monoclonal antibody and enrofloxacin antigen onto the surface of an AuNP coated screen-printed carbon ink electrode (SPCE). The poly-(aminothiophenol) layer thickness was adjusted to entrap and restrict enrofloxacin antigens near the surface. The imprinting and removal of the enrofloxacin antigen in the MIP film were strongly validated by the Raman spectra. The final mAb-MIP sensor had better sensitivity (302 Ω mL ng-1) and a better detection limit (0.05 ng mL-1) than self-assembled monolayer (SAM)-based immunosensors, which had 102 Ω mL ng-1 and 0.1 ng mL-1, respectively.
Collapse
Affiliation(s)
- Toan Phi Van
- School of Engineering Physics, Hanoi University of Science and Technology, No. 1 Dai Co Viet road, Hai Ba Trung dist., Hanoi, Vietnam.
| | - Tin Phan Nguy
- Vietnam-Korea Institute of Science and Technology, 304, 113 Tran Duy Hung, Cau Giay dist., Hanoi, Vietnam
| | - Lien T N Truong
- School of Engineering Physics, Hanoi University of Science and Technology, No. 1 Dai Co Viet road, Hai Ba Trung dist., Hanoi, Vietnam.
- Vietnam-Korea Institute of Science and Technology, 304, 113 Tran Duy Hung, Cau Giay dist., Hanoi, Vietnam
| |
Collapse
|
16
|
Nguyen MC, Ngan Luong TQ, Vu TT, Anh CT, Dao TC. Synthesis of wool roll-like silver nanoflowers in an ethanol/water mixture and their application to detect traces of the fungicide carbendazim by SERS technique. RSC Adv 2022; 12:11583-11590. [PMID: 35425087 PMCID: PMC9006241 DOI: 10.1039/d1ra09286c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
The Raman signal enhancement ability of the surface-enhanced Raman scattering (SERS) technique is largely determined by the SERS substrate, which is usually a collection of precious metal (such as silver or gold) nanoparticles. For use in the SERS substrate, anisotropic metal nanoparticles, e.g. flower-like, will be preferred over the isotropic ones since they will give higher Raman enhancement. The problem is that it is very difficult to fabricate anisotropic metal nanoparticles as small as the isotropic ones that are best suited for use as SERS substrates. This study deals with the synthesis of wool roll-like silver nanoflowers (AgNFs) in a mixed ethanol/water solution instead of the usual aqueous solution when reducing silver nitrate with ascorbic acid in the presence of citric acid, which acts as a structure-directing agent. The size of the wool roll-shaped AgNFs was reduced from about 700 nm when the solution was purely aqueous to about 280 nm when in the mixed solution the ethanol/water volume ratio was 75/25. Thanks to the size reduction of AgNFs, the enhancement factor of SERS substrates made from them has increased dramatically, from 2.7 × 106 when the size of AgNFs is 700 nm to 5.4 × 109 when their size is 280 nm (the calculation is based on rhodamine 6G Raman and SERS spectroscopy). The application of the above AgNFs to recording the SERS spectrum of carbendazim (CBZ), a typical fungicide, at low concentrations has also shown that the smaller the size of the AgNFs, the higher the intensity of the CBZ characteristic bands. The wool roll-shaped AgNFs with a size of 280 nm allowed CBZ to be detected down to a concentration of 0.01 ppm (4.2 × 10-8 M) with a detection limit of 3.2 ppb (13.4 × 10-9 M).
Collapse
Affiliation(s)
- Manh Cuong Nguyen
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| | - Truc Quynh Ngan Luong
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| | - Thi Thu Vu
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| | - Cao Tuan Anh
- Tantrao University Yen Son Trung Mon 22000 Tuyenquang Vietnam
| | - Tran Cao Dao
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay 100000 Hanoi Vietnam
| |
Collapse
|
17
|
Xu H, Easa J, Pate SG, Jin R, O'Brien CP. Operando Surface-Enhanced Raman-Scattering (SERS) for Probing CO 2 Facilitated Transport Mechanisms of Amine-Functionalized Polymeric Membranes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15697-15705. [PMID: 35316018 DOI: 10.1021/acsami.2c02769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work describes a new operando surface enhanced Raman spectroscopy (SERS) platform that we developed for use with polymeric membranes that includes (1) a method for preparing SERS-active polymer membranes and (2) a permeation cell with optical access for SERS characterization of membranes under realistic operating conditions. This technique enables the direct correlation of membrane structure to its performance under realistic operating conditions by combining in situ SERS characterization of the molecular structure of polymer membranes and simultaneous measurement of solute permeation rates on the same sample. Using the new operando SERS technique, this work aims to clarify the unknown mechanisms by which reactive amines facilitate CO2 transport across polyvinylamine (PVAm), a prototypical facilitated transport membrane for CO2 separations. We show that a small amount of plasmonic silver particles added to the PVAm solution prior to knife-casting selectively enhances the sensitivity to detection of chemical intermediates (e.g., carbamate) formed in the PVAm film due to the surface-enhanced Raman scattering effect with only minimal effect on the CO2 permeance and selectivity of the membrane. Operando SERS characterization of PVAm during exposure to humidified CO2/CH4 biogas mixtures at room temperature shows that CO2 permeates across PVAm primarily as carbamate species. This work clarifies the previously unknown mechanism of CO2 facilitated transport across PVAm and establishes a new operando SERS platform that can be used with a wide range of polymer membrane systems. This technique can be used to elucidate fundamental transport mechanisms in polymer membranes, to establish reliable structure-performance relationships, and for real-time diagnostics of membrane fouling, among other applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United Sates
| | - Justin Easa
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United Sates
| | - Sarah G Pate
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United Sates
| | - Renxi Jin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United Sates
| | - Casey P O'Brien
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United Sates
| |
Collapse
|
18
|
Selective detection of enrofloxacin in biological and environmental samples using a molecularly imprinted electrochemiluminescence sensor based on functionalized copper nanoclusters. Talanta 2022; 236:122835. [PMID: 34635225 DOI: 10.1016/j.talanta.2021.122835] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
Enrofloxacin (ENR) is a broad-spectrum fungicide that has been largely applied in pharmacy and animal-specific medicine. In this paper, a simple, novel and highly sensitive molecularly imprinted electrochemiluminescence (MIP-ECL) sensor based on mercaptopropionic acid-functionalized copper nanoclusters (MPA-Cu NCs) was developed to selectively detect enrofloxacin (ENR). MPA-Cu NCs prepared by a one-step method were used to modify the glassy carbon electrode. A molecularly imprinted polymer film containing the cavity was constructed after electropolymerization and elution. Under optimized conditions, the MIP-ECL sensor could detect ENR in the range of 0.1 nM-1 μM (R2 = 0.9863) with a low limit of detection of 27 pM, and the recovery rates of ENR in biological and lake water samples were 88.20-105.0%. The MIP-ECL sensor provided path to improve the stability issues of Cu NCs, which might open promising avenues to develop new ECL systems for biological analysis and environmental water monitoring.
Collapse
|
19
|
Hu M, Liang G, Chen K, Zhu L, Xu M, Wang M, Li J, He L, Zhang Z, Du M. Conjugated bimetallic cobalt/iron polyphthalocyanine as an electrochemical aptasensing platform for impedimetric determination of enrofloxacin in diverse environments. Mikrochim Acta 2021; 188:432. [PMID: 34822036 DOI: 10.1007/s00604-021-05086-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022]
Abstract
The synthesis of bimetallic cobalt/iron polyphthalocyanine (represented by polyCoFePc) network via a modified solid-phase synthesis method is described. It was exploited as a platform for anchoring enrofloxacin (ENR)-targeted aptamer strands, thus, fabricating a label-free impedimetric aptasensor for determination of ENR. The polyCoFePc exhibited a porous two-dimensional (2D) conjugated nanostructure and rich functional groups, and showed a superior binding interaction toward aptamer strands as compared to monometallic polyFePc and polyCoPc networks. This finding was attributed to structural defects and increased active binding sites, thereby giving a highly sensitive detection ability toward ENR. By using electrochemical impedance spectroscopy (EIS), the polyCoFePc-based electrochemical aptasensor exhibited an extremely low detection limit of 0.06 fg mL-1 within the ENR concentration from 0.1 fg mL-1 to 100 pg mL-1, along with high selectivity, good reproducibility, and remarkable stability. Interestingly, the constructed polyCoFePc-based aptasensor also demonstrated wide practicability in various environments. The recoveries of ENR spiked into river water, milk, and pork samples ranged within 91.2 - 107.2%, 90.5 - 109.6%, and 91.2 - 102.3%, respectively.
Collapse
Affiliation(s)
- Min Hu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Gaolei Liang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Kun Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Lei Zhu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Miaoran Xu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
20
|
Zhang S, Jiang Z, Liang Y, Shen Y, Mao H, Sun H, Zhao X, Li X, Hu W, Xu G, Cao Z. Effect of the Duty Cycle of Flower-like Silver Nanostructures Fabricated with a Lyotropic Liquid Crystal on the SERS Spectrum. Molecules 2021; 26:6522. [PMID: 34770932 PMCID: PMC8587726 DOI: 10.3390/molecules26216522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 11/17/2022] Open
Abstract
Surface-enhanced Raman scattering (SERS) has been widely reported to improve the sensitivity of Raman spectra. Ordinarily, the laser is focused on the sample to measure the Raman spectrum. The size of the focused light spot is comparable with that of micro-nano structures, and the number of micro-nano structures contained in the light spot area (defined as duty cycle) will severely affect the spectrum intensity. In this study, flower-like silver nanostructures were fabricated with a soft lyotropic liquid crystal template in order to investigate the effect of duty cycle. They were observed under a scanning electron microscope, and their spectrum enhancement factor was computed with the obtained Raman spectrum. Then, their duty cycles were measured using a SERS substrate at different locations. A formula was derived to represent the relation between the duty cycle of the nanoflowers and the Raman spectral intensity. This work could promote the actual applications of SERS in high-sensitivity spectrum testing.
Collapse
Affiliation(s)
- Shen Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (S.Z.); (Z.J.); (H.M.); (G.X.)
| | - Zhihui Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (S.Z.); (Z.J.); (H.M.); (G.X.)
| | - Yijin Liang
- Shanghai Institute of Satellite Engineering, China Aerospace Science and Technology Corporation, Shanghai 201109, China; (Y.L.); (Y.S.)
| | - Yili Shen
- Shanghai Institute of Satellite Engineering, China Aerospace Science and Technology Corporation, Shanghai 201109, China; (Y.L.); (Y.S.)
| | - Hongmin Mao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (S.Z.); (Z.J.); (H.M.); (G.X.)
| | - Huijuan Sun
- Institute of Fundamental and Interdisciplinary Sciences, Institute of Mathematics and Physics, Beijing Union University, Beijing 100101, China;
| | - Xin Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Xiaoping Li
- Basic Department, Jiyuan Vocational and Technical College, Jiyuan 454682, China; (X.L.); (W.H.)
| | - Wusheng Hu
- Basic Department, Jiyuan Vocational and Technical College, Jiyuan 454682, China; (X.L.); (W.H.)
| | - Guoding Xu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (S.Z.); (Z.J.); (H.M.); (G.X.)
| | - Zhaoliang Cao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (S.Z.); (Z.J.); (H.M.); (G.X.)
| |
Collapse
|
21
|
Yu Z, Huang L, Zhang Z, Li G. Simultaneous and Accurate Quantification of Multiple Antibiotics in Aquatic Samples by Surface-Enhanced Raman Scattering Using a Ti 3C 2T x/DNA/Ag Membrane Substrate. Anal Chem 2021; 93:13072-13079. [PMID: 34515467 DOI: 10.1021/acs.analchem.1c03019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rapid and accurate analysis of multiple targets in complex samples is still a big challenge in the fast detection field. Herein, we developed a rapid and accurate strategy for simultaneous quantification of trace multiple antibiotic residues in complex aquatic samples by surface-enhanced Raman scattering (SERS) using a Ti3C2Tx/DNA/Ag membrane substrate. This membrane substrate was proven to have good uniformity, reproducibility, stability, and SERS activity by a series of characterizations. Also, this substrate combined excellent electromagnetic enhancement and chemical enhancement effects, which endowed it with good sensitivity and selectivity during SERS analysis. It achieved the integration of multitarget separation, enrichment, and in situ detection, which significantly improved the selectivity, sensitivity, accuracy, and detection throughput by membrane substrate coupling with SERS for real-sample analysis. Finally, this rapid SERS analysis strategy was successfully applied to the simultaneous quantification of trace nitrofurantoin (NFT) and ofloxacin (OFX) in aquatic samples. It was observed that trace NFT and OFX were actually detected and simultaneously quantified to be 8.0-13.7 and 42.6-49.1 μg/kg in aquatic samples, respectively, with good recoveries of 88.0-107% and relative standard deviations of 0.3-5.5%. The results were verified by a traditional high-performance liquid chromatography method with relative errors of -9.8 to 5.3%. This strategy provided a methodological reference for accurate SERS quantification of multiple targets in complex samples.
Collapse
Affiliation(s)
- Zhongning Yu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
22
|
Jiao M, Zhang J, Wu K, Deng A, Li J. A novel electrochemiluminescence immunosensing strategy fabricated by Co(OH) 2 two-dimensional nanosheets and Ru@SiO 2-Au NPs for the highly sensitive detection of enrofloxacin. Analyst 2021; 146:5429-5436. [PMID: 34355709 DOI: 10.1039/d1an00969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel sensitive electrochemiluminescence immunosensor based on Ru@SiO2-Au NPs and Co(OH)2 two-dimensional nanosheets (2D Co(OH)2) is constructed for the detection of enrofloxacin (ENR). Ruthenium bipyridine silica spheres and modified gold nanoparticles were synthesized as immune probe materials, which were combined with ENR antibodies (Abs) to form the immune probe part. 2D Co(OH)2 with a large specific surface area and good catalytic effect was firstly used as an immune substrate material, and at the same time, it was conjugated with the coating antigen (Ae) of ENR to form an immune substrate. Based on the principle of competitive immunity, ENR and ENR coated antigen could jointly compete for the specific binding sites on the ENR antibody, so as to achieve efficient detection of ENR. Under optimal conditions, the prepared immunosensor exhibited high sensitivity with a wide linear range from 0.0001 to 1000 ng mL-1 and a low detection limit (LOD) of 0.063 pg mL-1. The proposed immunosensor has been successfully applied to the detection of ENR residues in poultry, aquatic products and lake water.
Collapse
Affiliation(s)
- Mengqi Jiao
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | | | | | | | | |
Collapse
|
23
|
Pei Y, Zeng L, Wen C, Wu K, Deng A, Li J. Detection of enrofloxacin by flow injection chemiluminescence immunoassay based on cobalt hydroxide nanozyme. Mikrochim Acta 2021; 188:194. [PMID: 34013434 DOI: 10.1007/s00604-021-04846-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
The emergence and development of low-cost and high-efficiency nanozymes are promising to replace natural enzymes promoting the application of chemiluminescence immunoassays. Herein, a rapid and highly sensitive flow injection chemiluminescence immunoassay based on cobalt hydroxide (Co(OH)2) nanozyme was established to detect enrofloxacin (ENR) residues in food. In this system, Co(OH)2 nanosheets act as nanozymes to catalyze and amplify the chemiluminescence signal of the luminol-PIP-H2O2 system, as well as a carrier for immobilizing antibodies to form stable immunoprobes. In addition, carboxyl resin beads with good stability and biocompatibility were used as the base of the immunosensor to carry more coating antigens, based on the principle of competitive immunity and to achieve the rapid detection of ENR. Under optimal conditions, the linear working range is 0.0001 ~ 1000 ng/mL, and the limit of detection (LOD) is 0.041 pg/mL (S/N = 3). The method has been successfully applied to the analysis of aquatic products and poultry food. A non-enzyme immunosensor using Co(OH)2 nanosheets as antibody-conjugated carriers and peroxidase mimics for catalytic amplification of the chemiluminescence signal of luminol and using carboxyl resin beads as platform was designed to detect ENR residues in food.
Collapse
Affiliation(s)
- Yingqi Pei
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Lingjian Zeng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Chifang Wen
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
24
|
Zhang D, Pu H, Huang L, Sun DW. Advances in flexible surface-enhanced Raman scattering (SERS) substrates for nondestructive food detection: Fundamentals and recent applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.058] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Song Y, Xu M, Liu X, Li Z, Wang C, Jia Q, Zhang Z, Du M. A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal–organic framework (MOF). Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137609] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Wang ZX, Jin X, Wang WJ, Kong FY, Zhu J, Li HY, Ding YJ, Wang W. Green synthesis of a deep-ultraviolet carbonized nanoprobe for ratiometric fluorescent detection of feroxacin and enrofloxacin in food and serum samples. Analyst 2021; 146:874-881. [DOI: 10.1039/d0an02114h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A sensitive ratiometric fluorescent probe for EFC and FXC detection in milk and bovine serum samples based on the internal filtration effect.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Xing Jin
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
- College of Biochemical Engineering
| | - Wen-Juan Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Jing Zhu
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Yu-Jie Ding
- College of Biochemical Engineering
- Anhui Polytechnic University
- Wuhu
- P. R. China
| | - Wei Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| |
Collapse
|
27
|
Wang S, Sun B, Feng J, An F, Li N, Wang H, Tian M. Development of affinity between target analytes and substrates in surface enhanced Raman spectroscopy for environmental pollutant detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5657-5670. [PMID: 33226038 DOI: 10.1039/d0ay01760d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Environmental pollution has long been a social concern due to the variety of pollutants and their wide distribution, persistence and being detrimental to health. It is therefore necessary to develop rapid and sensitive strategies to trace and detect these compounds. Among various detection methodologies, surface enhanced Raman spectroscopy (SERS) has become an attractive option as it enables accurate analyte identification, simple sample preparation, rapid detection and ultra-high sensitivity without any interference from water. For SERS detection, an essential yet challenging step is the effective capture of target analytes onto the surface of metal nanostructures with a high intensity of enhanced electromagnetic field. This review has systematically summarized recent advances in developing affinity between targets and the surface of SERS substrates via direct adsorption, hydrophobic functional groups, boronate affinity, metal organic frameworks (MOFs), DNA aptamers and molecularly imprinted polymers (MIPs). At the end of this review, technical limitations and outlook have been provided, with suggestions on optimizing SERS techniques for real-world applications in environmental pollutant detection.
Collapse
Affiliation(s)
- Shiqiang Wang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Junjie Feng
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Fei An
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Na Li
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Haozhi Wang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering, Qingdao, Shandong 266071, People's Republic of China.
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
28
|
Ihsan J, Farooq M, Khan MA, Khan AS, Muhammad S, Ahmad N, Haleem A, Shah LA, Saeed S, Siddiq M. Acacia Gum Hydrogels Embedding the In Situ Prepared Silver Nanoparticles; Synthesis, Characterization, and Catalytic Application. Catal Letters 2020. [DOI: 10.1007/s10562-020-03380-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|