1
|
Feng KC, Muneeb Ur Rehman M, Huang JC. Bioaccumulation and biotransformation of hexavalent chromium in black soldier fly (Hermetia illucens) in the antagonism of selenate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126054. [PMID: 40086785 DOI: 10.1016/j.envpol.2025.126054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
As a global environmental pollutant, many studies have focused on the removal of hexavalent chromium [Cr(VI)] from industrial wastewater, using organic materials as adsorbents. This study investigated the potential of the black soldier fly (BSF) for the bioremediation of the Cr-adsorbing/containing wheat bran as an adsorbent and antagonistic effects of selenate [Se(VI)] on Cr accumulation/transformation by the BSF. Our results indicate the BSF could tolerate Cr/Se toxicity without exhibiting significant morphological changes. Cr/Se concentrations in the BSF biomass decreased over the life cycle, suggesting the detoxification of both contaminants, while relatively lower Cr but significantly higher Se concentrations were found in the larvae co-exposed to Cr and Se, compared with the Cr/Se-exposed only larvae. Low bioaccumulation factor (BAF) values (∼0.47) indicate the absorbed Cr tended to be excreted out. The XAS results suggest the accumulated Cr was mainly present as elemental chromium during growth, while the Se, potentially as an antagonist, was mainly converted to elemental selenium and organo-Se species (selenomethionine/selenocystine) in the BSF co-exposed to Cr and Se. Overall, our study provides a better understanding of the biotransformation of Cr(VI), with or without Se, by the BSF, and risks of using the Cr-containing BSF as feed.
Collapse
Affiliation(s)
- Kuan-Chieh Feng
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan
| | | | - Jung-Chen Huang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 701, Taiwan.
| |
Collapse
|
2
|
Anush S, Singh S, Kolobe SD, Yudhistira B, Ahmad A, Mabelebele Monnye. RETRACTED: The role of black soldier fly (BSF) in eliminating the putrid odor of organic waste and its product application - A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:175956. [PMID: 39233065 DOI: 10.1016/j.scitotenv.2024.175956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of Editor. Post-publication, the editor discovered suspicious changes in authorship between the original submission and the revised version of this paper. In summary Ali Ahmad, who had not been part of the authorship of the original submission, was added as the new and only Corresponding Author. Shahida Anusha Siddiqui remained as part of the authorship, but no longer as sole Corresponding Author. These changes to the revised paper without explanation and without exceptional approval by the journal editor are contrary to the journal policy on changes to authorship. Both authors were contacted for an explanation. Shahida Anusha Siddiqui confirmed that sole corresponding authorship should be bestowed upon Ali Ahmad, but otherwise failed to provide a satisfactory explanation for these changes. Ali Ahmad did not respond. Overall, the editor feels that the findings of the manuscript cannot be relied upon and that the article needs to be retracted. The journal apologises for not having identified the problematic authorship changes during the review process and for any resulting inconvenience.
Collapse
Affiliation(s)
| | - Shreya Singh
- Department of Agriculture, Ramlalit Singh Mahavidyalaya, Kailhat, Chunar, Mirzapur, Uttar Pradesh, 231305, India
| | - Sekobane Daniel Kolobe
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa
| | - Bara Yudhistira
- Department of Food Science and Technology, Faculty of Agriculture, Sebelas Maret University, Surakarta, 57126, Indonesia.
| | - Ali Ahmad
- University of Duisburg-Essen, Universitätsstraße 2, 45141, Essen, Germany
| | - Mabelebele Monnye
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa.
| |
Collapse
|
3
|
Cattaneo A, Belperio S, Sardi L, Martelli G, Nannoni E, Meneguz M, Dabbou S. A First Step Towards Black Soldier Fly Larvae (Diptera: Stratiomyidae) Welfare by Considering Dietary Regimes (Part I). INSECTS 2024; 15:817. [PMID: 39452394 PMCID: PMC11508194 DOI: 10.3390/insects15100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
The insect farming sector is expanding, but knowledge of insect welfare is still limited. This article aims to optimize the dietary regime for "black soldier fly" (Hermetia illucens L., BSF) larvae by applying a holistic view of welfare. Four diets were tested: control (CONTR, commercial laying hen feed), vegetable (VEG), omnivorous (OMN), and carnivorous (MEAT) diet, conducting experiments at a large (2000 larvae) and small scale (100 larvae). Rearing parameters were calculated including the growth rate, substrate reduction, efficiency of conversion of digested food, waste reduction index, and survival rate. Chemical analyses were conducted on BSF larvae and the residual frass. While the MEAT diet appears to be non-well-performing for the larvae, the VEG diet performed comparably to the control diet. Interestingly, the OMN diet demonstrated improved efficiency when evaluating the growth process at both scales. The chemical composition of larvae and frass highlighted the nutritional adequacy of the OMN diet, with the BSF larvae showing adequate protein and lipid content without nutrient catabolism or signs of discomfort. Applying the five freedoms of Brambell's report as a welfare standard for animal rearing and evaluating performance as an indirect indicator of welfare, the OMN diet appears to promote larval welfare in rearing practices.
Collapse
Affiliation(s)
- Arianna Cattaneo
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele All’Adige, Italy;
| | - Simona Belperio
- Department of Veterinary Sciences (DIMEVET), University of Bologna, 40064 Ozzano dell’Emilia, Italy; (S.B.); (L.S.); (G.M.); (E.N.)
| | - Luca Sardi
- Department of Veterinary Sciences (DIMEVET), University of Bologna, 40064 Ozzano dell’Emilia, Italy; (S.B.); (L.S.); (G.M.); (E.N.)
| | - Giovanna Martelli
- Department of Veterinary Sciences (DIMEVET), University of Bologna, 40064 Ozzano dell’Emilia, Italy; (S.B.); (L.S.); (G.M.); (E.N.)
| | - Eleonora Nannoni
- Department of Veterinary Sciences (DIMEVET), University of Bologna, 40064 Ozzano dell’Emilia, Italy; (S.B.); (L.S.); (G.M.); (E.N.)
| | | | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele All’Adige, Italy;
| |
Collapse
|
4
|
Manas F, Piterois H, Labrousse C, Beaugeard L, Uzbekov R, Bressac C. Gone but not forgotten: dynamics of sperm storage and potential ejaculate digestion in the black soldier fly Hermetia illucens. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241205. [PMID: 39479251 PMCID: PMC11521600 DOI: 10.1098/rsos.241205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024]
Abstract
Understanding the dynamics of sperm storage is essential to unravel the complexity of post-copulatory sexual selection processes in internally fertilized species. This physiological process goes from sperm transfer during copulation to its use for fertilization. In this context, the spatiotemporal dynamics of sperm storage were described in the black soldier fly (BSF) with fluorescence and transmission electron microscopy (TEM). BSF females have compartmentalized spermathecae with a transfer compartment, the fishnet canals, and a storage compartment, the reservoirs. Spermatozoa were counted both during and after mating in the two compartments. In addition to seminal fluids, the male transfers a mass of sperm in the fishnet canals, then only 49% of the transferred spermatozoa reach the reservoirs over two days. TEM observations of the fishnet canals revealed potential digestive functions, explaining the decline in the number and viability of spermatozoa in this compartment but not in the reservoirs. After one mating, females laid up to three fertile clutches, showing no constraints on sperm quantity or quality. Spermatic and ultrastructural investigations strongly suggest that BSF ejaculate acts both as a sperm plug and as a nuptial gift, reinforcing the interest in studying this farming insect as a new model for sexual selection.
Collapse
Affiliation(s)
- Frédéric Manas
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Harmony Piterois
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Carole Labrousse
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Laureen Beaugeard
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| | - Rustem Uzbekov
- Plateforme IBiSA de Microscopie Electronique, University of Tours and CHRU of Tours, Tours37200, France
| | - Christophe Bressac
- Insect Research Biology Institute (IRBI), UMR CNRS 7261 University of Tours, Tours37200, France
| |
Collapse
|
5
|
Santos Filipe M, Cardoso RVC, Ayuso M, Murta D, Díaz-Lanza AM, Rosado C, C S P Pires T, Calhelha RC, Rijo P. Exploring the potential of Hermetia illucens larvae extracts: A promising approach for dermocosmetic formulations. Heliyon 2024; 10:e37395. [PMID: 39296133 PMCID: PMC11409144 DOI: 10.1016/j.heliyon.2024.e37395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Globally, the yearly disposal of 1.3 billion tonnes of food raises environmental and public health concerns. Black soldier fly (BSF) larvae present a sustainable solution, converting organic waste into nutrient-rich biomass. The extracted oil from BSF larvae, rich in fatty acids (FA), offers an eco-friendly alternative for the cosmetic industry. In this study, larvae sourced from a Portuguese company were fed olive pomace, a by-product of olive oil production. The lipidic sample extracted revealed a composition high in oleic acid, valuable for cosmetics. Investigating the biological activity of lipid extractions from larvae fed with olive pomace is a novel approach. Notably, the n-hexane ultrasound-assisted extraction method demonstrated potent antioxidant properties, and some extracts displayed antimicrobial activity. Five non-cytotoxic extracts; three with no relevant activity (IC50 from 236 to >400 μg/mL). These findings highlight BSF larvae as an environmentally friendly source of fatty acids, offering promising alternatives for diverse applications.
Collapse
Affiliation(s)
- Márcia Santos Filipe
- CBIOS - Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisbon, Portugal
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología, Nuevos agentes antitumorales, Acción tóxica sobre células leucémicasCtra. Madrid-Barcelona km. 33,600, 28805, Alcalá de Henares, Madrid, Spain
| | - Rossana V C Cardoso
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Manuel Ayuso
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Daniel Murta
- Ingredient Odyssey SA - EntoGreen, Rua Cidade de Santarém 140, 2005-079, Santarém, Portugal
- CiiEM - Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, Caparica, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología, Nuevos agentes antitumorales, Acción tóxica sobre células leucémicasCtra. Madrid-Barcelona km. 33,600, 28805, Alcalá de Henares, Madrid, Spain
| | - Catarina Rosado
- CBIOS - Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisbon, Portugal
| | - Tânia C S P Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Patricia Rijo
- CBIOS - Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| |
Collapse
|
6
|
Tepper K, Edwards O, Sunna A, Paulsen IT, Maselko M. Diverting organic waste from landfills via insect biomanufacturing using engineered black soldier flies (Hermetia illucens). Commun Biol 2024; 7:862. [PMID: 39048665 PMCID: PMC11269589 DOI: 10.1038/s42003-024-06516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
A major roadblock towards the realisation of a circular economy are the lack of high-value products that can be generated from waste. Black soldier flies (BSF; Hermetia illucens) are gaining traction for their ability to rapidly consume large quantities of organic wastes. However, these are primarily used to produce a small variety of products, such as animal feed ingredients and fertiliser. Using synthetic biology, BSF could be developed into a novel sustainable biomanufacturing platform to valorise a broader variety of organic waste feedstocks into enhanced animal feeds, a large variety of high-value biomolecules including industrial enzymes and lipids, and improved fertiliser.
Collapse
Affiliation(s)
- Kate Tepper
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- EntoZyme PTY LTD, Sydney, NSW, Australia
| | | | - Anwar Sunna
- School of Natural Sciences, Mascquarie University, Sydney, NSW, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Ian T Paulsen
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
- School of Natural Sciences, Mascquarie University, Sydney, NSW, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Maciej Maselko
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia.
- EntoZyme PTY LTD, Sydney, NSW, Australia.
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Lee KS, Yun EY, Goo TW. Resource Utilization of Residual Organic Sludge Generated from Bioenergy Facilities Using Hermetia illucens Larvae. INSECTS 2024; 15:541. [PMID: 39057273 PMCID: PMC11277006 DOI: 10.3390/insects15070541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Residual organic sludge generated from bioenergy facilities (BF-rOS) is often disposed instead of recycled, thus contributing to further environmental pollution. This study explored the resource utilization of BF-rOS using Hermetia illucens larvae (BSFL). When BF-rOS was fed to BSFL for two weeks, the dry weight per individual BSFL was approximately 15% of that of BSFL that were fed food waste (FW). However, the dry weight increased by approximately two-fold in BSFL that were fed effective microorganism (EM)-supplemented BF-rOS containing 60% moisture. However, under both conditions, the BSFL did not mature into pupae. In contrast, the highest dry weight per BSFL was observed with the BF-rOS/FW (50%:50%) mixture, regardless of EM supplementation. Furthermore, the highest bioconversion rate was observed when the BSFL were fed the BF-rOS/FW (50%:50%) mixture, and the frass produced by the BSFL contained fertilizer-appropriate components. In addition, the nutritional components of the BSFL exhibited a nutrient profile suitable for animal feed, except for those fed BF-rOS only. In conclusion, this investigation demonstrates that BF-rOS should be recycled for fertilizer production by mixing it with FW as a BSFL feed, which generates the valuable insect biomass as potential nutrition for animal feeding.
Collapse
Affiliation(s)
- Kyu-Shik Lee
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju 38766, Republic of Korea;
| | - Eun-Young Yun
- Department of Integrative Bio-Industrial Engineering, Sejong University, Seoul 05006, Republic of Korea;
| | - Tae-Won Goo
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38766, Republic of Korea
| |
Collapse
|
8
|
Gwenzi W, Gufe C, Alufasi R, Makuvara Z, Marumure J, Shanmugam SR, Selvasembian R, Halabowski D. Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171116. [PMID: 38382596 DOI: 10.1016/j.scitotenv.2024.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, 18A Bevan Building, Borrowdale Road, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
9
|
Belperio S, Cattaneo A, Nannoni E, Sardi L, Martelli G, Dabbou S, Meneguz M. Assessing Substrate Utilization and Bioconversion Efficiency of Black Soldier Fly ( Hermetia illucens) Larvae: Effect of Diet Composition on Growth and Development Temperature. Animals (Basel) 2024; 14:1340. [PMID: 38731343 PMCID: PMC11083502 DOI: 10.3390/ani14091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Black soldier fly larvae (BSFL) can utilize food by-products or residues for growth, benefiting farm animal's diets' production sustainability. The experiment aimed to assess the effect of different substrate compositions on larval growth, chemical composition, and substrate temperature. BSFL were allocated to one of the four diets (control, vegetable, carnivorous, and omnivorous) for the entire experiment (8 days). The temperature was measured twice daily using a thermal-imaging camera, and the accumulated degree hours (ADH) was calculated. The results showed that the larvae fed the vegetable diet exhibited a significantly reduced growth performance, with a biomass reduction of 26.3% compared to the control diet; furthermore, vegetable-fed larvae showed a lower dry matter content (-30% compared to the average of other diets) due to lower fat content (-65% compared to average of other diets). The nutritional composition of larvae fed an omnivorous diet was similar to larvae fed a high-quality substrate diet (control diet-chicken feed), indicating that the omnivorous diet could be an ideal solution for rearing BSFL larvae; however, the current European legislation prohibits the use of animal meal. The study also revealed that substrate temperatures did not have a discernible influence on larval growth, further emphasizing the importance of diet in BSFL rearing strategies.
Collapse
Affiliation(s)
- Simona Belperio
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, 40064 Bologna, Italy; (S.B.); (E.N.); (G.M.)
| | - Arianna Cattaneo
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele All‘Adige, TN, Italy; (A.C.); (S.D.)
| | - Eleonora Nannoni
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, 40064 Bologna, Italy; (S.B.); (E.N.); (G.M.)
| | - Luca Sardi
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, 40064 Bologna, Italy; (S.B.); (E.N.); (G.M.)
| | - Giovanna Martelli
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, 40064 Bologna, Italy; (S.B.); (E.N.); (G.M.)
| | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele All‘Adige, TN, Italy; (A.C.); (S.D.)
| | | |
Collapse
|
10
|
Gourgouta M, Andreadis SS, Koutsogeorgiou EI, Rumbos CI, Grigoriadou K, Giannenas I, Bonos E, Skoufos I, Athanassiou CG. Larval performance of Zophobas morio (F.) (Coleoptera: Tenebrionidae) on various diets enriched with post-distillation residues and essential oils of aromatic and medicinal plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28847-28855. [PMID: 38561538 PMCID: PMC11058798 DOI: 10.1007/s11356-024-32603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
The increasing demands for resources driven by the global population necessitate exploring sustainable alternatives for affordable animal protein over the use of traditional protein sources. Insects, with their high protein content, offer a promising solution, especially when reared on agricultural post-distillation residues for enhanced sustainability and cost-effectiveness. We assessed the development of Zophobas morio (F.) (Coleoptera: Tenebrionidae) larvae on diets enriched with essential oils and post-distillation residues from Greek aromatic and medicinal plants. Two aromatic plant mixtures (A and B) were examined. Mixture A consisted of post-distillation residues, while Mixture B incorporated these residues along with essential oils. Insect rearing diets were enriched with different proportions (10, 20, and 30 %) of these mixtures, with wheat bran serving as the control. Enrichment positively influenced larval development without compromising survival. Larval weight remained unchanged with Mixture A, but improved with Mixture B. No adverse effects were detected in the case of the enriched diets, although higher concentrations of Mixture B prolonged development time.
Collapse
Affiliation(s)
- Marina Gourgouta
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str, 38446, N. Ionia, Magnesia, Greece.
| | - Stefanos S Andreadis
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (DIMITRA), 57001, Thermi, Greece
| | - Eleni I Koutsogeorgiou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (DIMITRA), 57001, Thermi, Greece
| | - Christos I Rumbos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str, 38446, N. Ionia, Magnesia, Greece
| | - Katerina Grigoriadou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization (DIMITRA), 57001, Thermi, Greece
| | - Ilias Giannenas
- Laboratory of Nutrition, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftherios Bonos
- Laboratory of Animal Production, Nutrition and Biotechnology, University of Ioannina, Arta, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Production, Nutrition and Biotechnology, University of Ioannina, Arta, Greece
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str, 38446, N. Ionia, Magnesia, Greece
| |
Collapse
|
11
|
Cattaneo A, Meneguz M, Dabbou S, Tambone F, Scaglia B. Local circular economy: BSF insect rearing in the Italian Agri-Food Industry. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 179:234-244. [PMID: 38489981 DOI: 10.1016/j.wasman.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
With a growing population, both food and waste production will increase. There is an urgent need for innovative ways of valorizing waste. The black soldier fly (Hermetia illucens L.) efficiently converts agri-food by-products (BPs) into high-quality materials; its rearing process yields larvae (BSFL) rich in fat and protein for feed purposes, with "frass" acting as organic fertilizer. While the insect rearing sector is expanding, few producers use BPs. Therefore, a case study approach was adopted to evaluate the potential for establishing an Italian BSFL production plant on BPs available on the territory. After contacting more than 115 agri-food companies (maximum 100 km from the BSFL plant), they were classified based on sector, distance, size, and BPs (quantity, seasonality, management). BPs with a low value (fruit and vegetable residues) were treated as waste, associated with costs and low valorization. By merging the available BPs on the territory and following the literature on BSFL nutritional needs' two diets (Scenario BSFL) were created, assessing their suitability comparing them to the current full-scale plant diet (Scenario 0). The exploitation of BPs for BSFL rearing reduced local waste production by 52 % compared to conventional composting (Scenario 0). In addition, integrating BPs into the larval feed formulation increased BSFL production value (+47 times). These results highlight the potential of locally-based insect rearing to valorize BPs and create a network of sustainable actors within the agri-food industry. Further investigations are needed to improve the connection between agri-food and insect industrial activities, expanding this framework to other regions.
Collapse
Affiliation(s)
- Arianna Cattaneo
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, San Michele all'Adige 38098, Italy; BEF Biosystems s.r.l. Strada di Settimo 224/15, 10156 Turin, Italy
| | - Marco Meneguz
- BEF Biosystems s.r.l. Strada di Settimo 224/15, 10156 Turin, Italy.
| | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, San Michele all'Adige 38098, Italy
| | - Fulvia Tambone
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of the Study of Milan, Via Celoria 2, Milan 20133, Italy
| | - Barbara Scaglia
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of the Study of Milan, Via Celoria 2, Milan 20133, Italy
| |
Collapse
|
12
|
Ferronato N, Paoli R, Romagnoli F, Tettamanti G, Bruno D, Torretta V. Environmental impact scenarios of organic fraction municipal solid waste treatment with Black Soldier Fly larvae based on a life cycle assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17651-17669. [PMID: 37129817 PMCID: PMC10923962 DOI: 10.1007/s11356-023-27140-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Biowaste treatment with Black Soldier Fly (BSF) larvae is an alternative option for organic waste valorization. Its environmental impacts should be assessed and compared with conventional treatment options. The research aims to evaluate the treatment of organic fraction of municipal solid waste (OFMSW) with BSF larvae through a life cycle assessment (LCA). This study employed data inventories from literature and aimed to provide a wide range of production parameter values to identify the potentialities of BSF treatment in the best-case and worst-case scenarios. The SimaPro9, the database Ecoinvent3.5, and the impact assessment method IMPACT 2002+ have been employed for the analysis. A sensitivity analysis of relevant parameters was conducted, considering the avoided impacts that can be obtained thanks to the exploitation of larvae proteins for bioplastics or fishmeal production. Research findings highlight six main environmental impact indicators: respiratory inorganics (kg PM2.5-eq), ozone layer depletion (kg CFC-11-eq), terrestrial ecotoxicity (kg TEG soil), land occupation (m2 organic arable), global warming (kg CO2-eq), and non-renewable energy (MJ primary). The most relevant process generating impacts is BSF breeding, followed by boiling, storage, and OFMSW treatment. The environmental performance is better when the conventional fishmeal substituted, thanks to BSF larvae production, is made from areas 10,000 km far, implementing a 100% renewable energy scenario, reducing the energy consumption by 50%, increasing the lifespan of the equipment to 15 years, and products are employed locally. The current study represents the first attempt to evaluate the global higher or lower environmental impact scenario related to OFMSW treatment through BSF larvae.
Collapse
Affiliation(s)
- Navarro Ferronato
- Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, 21100, Varese, Italy.
| | - Riccardo Paoli
- Institute of Energy Systems and Environment, Riga Technical University, Āzenes iela 12/1, Riga, LV-1048, Latvia
| | - Francesco Romagnoli
- Institute of Energy Systems and Environment, Riga Technical University, Āzenes iela 12/1, Riga, LV-1048, Latvia
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, Via Università 100, 80055, Portici (NA), Italy
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, Via G.B. Vico 46, 21100, Varese, Italy
| |
Collapse
|
13
|
Shovon SM, Akash FA, Rahman W, Rahman MA, Chakraborty P, Hossain HZ, Monir MU. Strategies of managing solid waste and energy recovery for a developing country - A review. Heliyon 2024; 10:e24736. [PMID: 38312703 PMCID: PMC10835228 DOI: 10.1016/j.heliyon.2024.e24736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/06/2024] Open
Abstract
Solid waste is considered one of the major pollutants of both water and surface worldwide. The growing global population, urban expansion, and industrial growth are the main reasons for solid waste generation. This has become a major challenge with both regional and worldwide consequences. The yearly generation of municipal solid wastes around the world is 2.01 BT (billion tons) among which about 33 % are not ecologically handled. To address this, proper solid waste management, especially recycling waste products, is crucial to achieving sustainability. High-income countries are able to recycle 51 % of their waste, while low-income countries only recycle 16 % of their waste. Inadequate solid waste management practices can only compound environmental and social problems. To handle these issues thermochemical and biochemical methods are used to convert solid waste to energy. Thermochemical method is suitable for developing countries though it is energy extensive. This review provides a detailed analysis of developing countries' solid waste management and energy recovery. It explores energy recovery technologies, including thermochemical and biochemical waste conversion processes.
Collapse
Affiliation(s)
- Shaik Muntasir Shovon
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Energy Conversion Laboratory, Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Faysal Ahamed Akash
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Energy Conversion Laboratory, Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Wahida Rahman
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Abdur Rahman
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Prosenjeet Chakraborty
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - H.M. Zakir Hossain
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Minhaj Uddin Monir
- Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Energy Conversion Laboratory, Department of Petroleum and Mining Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
14
|
Qiu Y, Wang P, Guo Y, Zhang L, Lu J, Ren L. Enhancing food waste reduction efficiency and high-value biomass production in Hermetia illucens rearing through bioaugmentation with gut bacterial agent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166488. [PMID: 37611705 DOI: 10.1016/j.scitotenv.2023.166488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The black soldier fly (BSF) rearing technology has been a promising bioconversion method for food waste (FW) disposal. However, when used independently, it currently only achieves low efficiency and biomass transformation rates (BTR). This study screened and identified two strains of gut beneficial bacteria, Bacillus cereus and Bacterium YC-LK-LKJ45. The efficiency of a complex culture formulated by these strains was investigated, focusing on enhancing FW reduction and high-value biomass production during the rearing of BSF larvae. The coculture agent group (G1-10%, with two strains in 1:1 volume ratio at a 10 % dosage) exhibited higher larval yield (627.67 g·kg-1), BTR (47.90 %), FW reduction efficiency (80.67 %), and total protein and fat yield (261.99 g·kg-1and 46.24 g·kg-1) compared to the control and the monoculture agent group (which added a single gut beneficial bacteria agent, either Bacillus cereus or Bacterium YC-LK-LKJ45). The bacterial agent altered the richness and diversity of the gut microbial community of BSF, increasing the relative abundance of beneficial bacteria such as Bacillus, Oceano bacillus, and Akkermansia, while decreasing pathogenic bacteria, such as Acinetobacter and Escherichia-Shigella. Structural equation model quantification revealed that α-diversity (λ = 0.897, p < 0.001) and BTR (λ = 0.747, p < 0.001) are crucial drivers for enhancing high-value biomass during bioaugmentation rearing. This investigation provides a theoretical framework for the effective management of food waste using BSF, enhancing its decomposition and transformation into higher-value biomass.
Collapse
Affiliation(s)
- Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yuwen Guo
- AnronX Technology (Beijing) Joint Stock Co., Ltd., Beijing 100086, China
| | - Luxi Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
15
|
Zabulionė A, Šalaševičienė A, Makštutienė N, Šarkinas A. Exploring the Antimicrobial Potential and Stability of Black Soldier Fly (Hermentia illucens) Larvae Fat for Enhanced Food Shelf-Life. Gels 2023; 9:793. [PMID: 37888366 PMCID: PMC10606111 DOI: 10.3390/gels9100793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
The larvae of the Black Soldier Fly (BSF, Hermetia illucens) have been introduced as one of the tools to create a circular economy model, which will be used in areas such as waste management and the treatment of industrial by-products to produce high-added-value food grade ingredients. The main aim of this research was to investigate the fat composition and antimicrobial activity against food pathogens and spoilers of Black Soldier Fly larvae. The research revealed that the Black Soldier Fly larvae fats are predominantly lauric fatty (40.93%), which are followed by palmitic, oleic, myristic, linolenic and palmitoleic fatty acids, accounting for 19.11, 17.34, 6.49, 8.79 and 3.89% of the fatty acid content, respectively. The investigation of the fats showed stability through a one-year monitoring period with no indication of chemical or microbiological spoilage. Different fat fractions were tested for antimicrobial activity, which showed efficiency against Candida albicans (the inhibition zone varied from 10.5 to 12.5 mm), Bacillus subtilis (from 12.5 to 16.5 mm), Staphylococcus aureus (12.5 mm) and Escherichia coli (10.0 mm). The inhibitory effect on Candida albicans was confirmed by shelf-life studies using larvae fat-based oleogel in a model food matrix. GraphPad Prism (ver. 8.0.1) was used for the statistical data processing. This research revealed the potential of Black Soldier Fly larvae fat as a very stable ingredient with promising antibacterial properties that can extend the product shelf-life in food matrixes even when used in relatively small amounts.
Collapse
Affiliation(s)
- Aelita Zabulionė
- Food Institute, Kaunas University of Technology, LT-50254 Kaunas, Lithuania; (A.Š.); (N.M.); (A.Š.)
| | | | | | | |
Collapse
|
16
|
De Filippis F, Bonelli M, Bruno D, Sequino G, Montali A, Reguzzoni M, Pasolli E, Savy D, Cangemi S, Cozzolino V, Tettamanti G, Ercolini D, Casartelli M, Caccia S. Plastics shape the black soldier fly larvae gut microbiome and select for biodegrading functions. MICROBIOME 2023; 11:205. [PMID: 37705113 PMCID: PMC10500907 DOI: 10.1186/s40168-023-01649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In the last few years, considerable attention has been focused on the plastic-degrading capability of insects and their gut microbiota in order to develop novel, effective, and green strategies for plastic waste management. Although many analyses based on 16S rRNA gene sequencing are available, an in-depth analysis of the insect gut microbiome to identify genes with plastic-degrading potential is still lacking. RESULTS In the present work, we aim to fill this gap using Black Soldier Fly (BSF) as insect model. BSF larvae have proven capability to efficiently bioconvert a wide variety of organic wastes but, surprisingly, have never been considered for plastic degradation. BSF larvae were reared on two widely used plastic polymers and shotgun metagenomics was exploited to evaluate if and how plastic-containing diets affect composition and functions of the gut microbial community. The high-definition picture of the BSF gut microbiome gave access for the first time to the genomes of culturable and unculturable microorganisms in the gut of insects reared on plastics and revealed that (i) plastics significantly shaped bacterial composition at species and strain level, and (ii) functions that trigger the degradation of the polymer chains, i.e., DyP-type peroxidases, multicopper oxidases, and alkane monooxygenases, were highly enriched in the metagenomes upon exposure to plastics, consistently with the evidences obtained by scanning electron microscopy and 1H nuclear magnetic resonance analyses on plastics. CONCLUSIONS In addition to highlighting that the astonishing plasticity of the microbiota composition of BSF larvae is associated with functional shifts in the insect microbiome, the present work sets the stage for exploiting BSF larvae as "bioincubators" to isolate microbial strains and enzymes for the development of innovative plastic biodegradation strategies. However, most importantly, the larvae constitute a source of enzymes to be evolved and valorized by pioneering synthetic biology approaches. Video Abstract.
Collapse
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Marco Bonelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marcella Reguzzoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Davide Savy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Silvana Cangemi
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Vincenza Cozzolino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Interdepartmental Research Centre of Nuclear Magnetic Resonance for the Environment, Agri-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Morena Casartelli
- Department of Biosciences, University of Milan, Milan, Italy.
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Naples Federico II, Portici, Italy.
| | - Silvia Caccia
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
- Department of Biosciences, University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Khan SAR, Tabish M, Yu Z. Mapping and visualizing of research output on waste management and green technology: A bibliometric review of literature. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1203-1218. [PMID: 37052320 DOI: 10.1177/0734242x221149329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The transition to a circular economy (CE) and environmental protection highly depends on waste management (WM) and green technology (GT). The purpose of this study is to examine the past two decades of WM and GT research to identify the most significant advancements and potential future research areas. Bibliometrics content analysis and text mining were utilized to resolve the subsequent issues: Has WM and GT research developed over time in the CE industry? Does WM and GT research have a clearly defined purpose? How do you foresee the future of WM and GT research in the context of CE evolving? Consequently, 1149 journal articles from the Scopus database were used to create and evaluate bibliometric networks. Therefore, five significant CE-related issues requiring additional research were identified: The first category is bio-based WM, followed by CE transition, GT, ecological impacts, municipal solid WM and lifecycle assessment, and finally, bio-based WM. Future research topics and a tool for the CE transition may be impacted by the investigation of inclusive WM systems, GT practices and their defining highlight patterns (which aim to minimalize waste generation). Future research goals include reducing waste and implementing WM into the CE framework.
Collapse
Affiliation(s)
| | | | - Zhang Yu
- School of Economics and Management, Chang'an University, Xi'an, China
- Department of Business Administration, ILMA University, Karachi, Pakistan
| |
Collapse
|
18
|
Siddiqui SA, Fernando I, Nisa' K, Shah MA, Rahayu T, Rasool A, Aidoo OF. Effects of undesired substances and their bioaccumulation on the black soldier fly larvae, Hermetia illucens (Diptera: Stratiomyidae)-a literature review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:823. [PMID: 37291225 DOI: 10.1007/s10661-023-11186-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/01/2023] [Indexed: 06/10/2023]
Abstract
Black soldier fly (BSF), Hermetia illucens (L.) (Diptera: Stratiomyidae), is predominantly reared on organic wastes and other unused complementary substrates. However, BSF may have a buildup of undesired substances in their body. The contamination of undesired substance, e.g., heavy metals, mycotoxins, and pesticides, in BSF mainly occurred during the feeding process in the larval stage. Yet, the pattern of accumulated contaminants in the bodies of BSF larvae (BSFL) is varied distinctively depending on the diets as well as the contaminant types and concentrations. Heavy metals, including cadmium, copper, arsenic, and lead, were reported to have accumulated in BSFL. In most cases, the cadmium, arsenic, and lead concentration in BSFL exceeded the recommended standard for heavy metals occurring in feed and food. Following the results concerning the accumulation of the undesired substance in BSFL's body, they did not affect the biological parameters of BSFL, unless the amounts of heavy metals in their diets are highly exceeding their thresholds. Meanwhile, a study on the fate of pesticides and mycotoxins in BSFL indicates that no bioaccumulation was detected for any of the target substances. In addition, dioxins, PCBs, PAHs, and pharmaceuticals did not accumulate in BSFL in the few existing studies. However, future studies are needed to assess the long-term effects of the aforementioned undesired substances on the demographic traits of BSF and to develop appropriate waste management technology. Since the end products of BSFL that are contaminated pose a threat to both human and animal health, their nutrition and production process must be well managed to create end products with a low contamination level to achieve a closed food cycle of BSF as animal feed.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, D-Quakenbrück, Germany.
| | - Ito Fernando
- Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Brawijaya, Jl. Veteran, Malang, East Java, 65145, Indonesia
| | - Khoirun Nisa'
- Department of Environmental Engineering, Sepuluh Nopember Institute of Technology, Sukolilo, Surabaya, East Java, 60111, Indonesia
| | - Mohd Asif Shah
- Woxsen University, Kamkole, Sadasivpet, Hyderabad, Telangana, 502345, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Teguh Rahayu
- CV HermetiaTech, Voza Premium Office 20th Floor, Jl. HR. Muhammad No. 31A, Putat Gede, Surabaya, 60189, Jawa Timur, Indonesia
| | - Adil Rasool
- Department of Management, Bakhtar University, Kabul, Afghanistan.
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, PMB, 00233, Somanya, Ghana
| |
Collapse
|
19
|
Ahmad IK, Peng NT, Amrul NF, Basri NEA, Jalil NAA, Azman NA. Potential Application of Black Soldier Fly Larva Bins in Treating Food Waste. INSECTS 2023; 14:434. [PMID: 37233062 PMCID: PMC10231102 DOI: 10.3390/insects14050434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The increase in the global population has led to a rise in organic waste generation and landfill sites. Consequently, there has been a global shift in focus towards the utilization of BSFL to address these challenges. This study aims to design, develop, and test a user-friendly BSFL bin and identify the optimal MCCM for treating organic waste using BSFL. The four BSFL bins have a dimension of 330 mm (width) × 440 mm (length) × 285 mm (height). This study uses mixtures of food waste added with different MCCMs, including chicken feed, rice bran, and garden waste. We add the mediums to the BSFL bins every third day and measure the humidity, ambient temperature, pH, medium temperature, and BSFL weight and length. The measurements show that the fabricated BSFL bins can fulfill the BSF lifecycle requirements. Wild BSFs lay eggs in the medium of BSFL bins, and the hatched larvae decompose it. When they reach the prepupae stage, they climb the ramp into the harvesting container. The results show that the food waste without MCCM produced the heaviest (0.228 g) and longest (2.16 cm) larvae; the prepupae are 2.15 cm long and weigh 0.225 g; and the growth rate is 53.72%. However, the high moisture content of 75.3% makes the maintenance work challenging. The medium with MCCM has a markedly lower moisture content of 51-58%. A comparison of the three MCCMs shows that the chicken feed produces the larvae and prepupae with the highest growth rate (the larvae are 2.10 cm long and weigh 0.224 g, the prepupae are 2.11 cm long and weigh 0.221 g, and the growth rate is 72.36%) and the frass with the lowest moisture content (51.2%). An effective BSFL composting system is easy to manage and produces the biggest larvae. In summary, food waste mixed with chicken feed is the most suitable MCCM for treating organic waste using BSFL.
Collapse
Affiliation(s)
- Irfana Kabir Ahmad
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Sustainable Urban Transport Research Centre (SUTRA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Ng Teck Peng
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nur Fardilla Amrul
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Noor Ezlin Ahmad Basri
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Sustainable Urban Transport Research Centre (SUTRA), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nurul Ain Abdul Jalil
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nur Asyiqin Azman
- Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
20
|
Alaaeldin Abdelfattah E, Renault D. Does the presence of heavy metal and catechol contaminants in organic waste challenge the physiological performance of the bioconverter Hermetia illucens? JOURNAL OF INSECT PHYSIOLOGY 2023; 144:104469. [PMID: 36525990 DOI: 10.1016/j.jinsphys.2022.104469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The increased human activities and the worldwide population growth are constantly increasing the production of solid wastes. Over the years, waste management has thus become a prominent issue for several companies and municipalities, and several engineering techniques have been developed over the years in order to convert wastes into other solid materials or fuels. Yet, several techniques are important contributors to environmental pollution, and biological-based solutions have thus become progressively very popular. In particular, insect-based conversion of organic wastes represent eco-friendly tools, and the growth and development of insect species such as the black soldier fly have been tested and improved for a large diversity of organic wastes. However, organic wastes, including food wastes, may contain several pollutants such as heavy metals and catechol which could affect the bioconversion efficiency by incurring physiological costs that would be undetectable at the organismal level, i.e. have null to little effects on the life cycle of Hermetia illucens. In this context, assessments of antioxidant capacities can provide a rapid and low-cost evaluation of the capability of insects to handle exposure to heavy metals and catechol. Here, we aimed at measuring the physiological responses of the black soldier fly H. illucens grown on food wastes (kitchen, fruit or vegetable wastes) contaminated by cadmium, iron, lead or catechol. Biomarkers of oxidative stress (concentrations of hydrogen peroxide and protein carbonyls), non-enzymatic total antioxidant capacity (ascorbic acid amounts) and activity of enzymatic antioxidants (activities of superoxide dismutase and polyphenoloxidase) were measured from the gut of the larvae. We found no evidence of deleterious impacts of food waste contamination by catechol or heavy metals on H. illucens. In most experimental treatments, the array of physiological endpoints we measured for evaluating the degree of oxidative stress experienced by the larvae remained similar to controls. Possible physiological effects were reported for cadmium and catechol only, which tended to increase the oxidation of proteins and hydrogen peroxide in the larvae. Finally, our results suggested that the nature of the food waste could equally affect the physiological responses of the insect.
Collapse
Affiliation(s)
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, 6553 Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| |
Collapse
|
21
|
Rehman KU, Hollah C, Wiesotzki K, Rehman RU, Rehman AU, Zhang J, Zheng L, Nienaber T, Heinz V, Aganovic K. Black soldier fly, Hermetia illucens as a potential innovative and environmentally friendly tool for organic waste management: A mini-review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:81-97. [PMID: 35730793 PMCID: PMC9925914 DOI: 10.1177/0734242x221105441] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 05/24/2023]
Abstract
The application of black soldier fly (BSF), Hermetia illucens based technology to process organic wastes presents a practical option for organic waste management by producing feed materials (protein, fat), biodiesel, chitin and biofertilizer. Therefore, BSF organic wastes recycling is a sustainable and cost-effective process that promotes resource recovery, and generates valuable products, thereby creating new economic opportunities for the industrial sector and entrepreneurs. Specifically, we discussed the significance of BSF larvae (BSFL) in the recycling of biowaste. Despite the fact that BSFL may consume a variety of wastes materials, whereas, certain lignocellulosic wastes, such as dairy manure, are deficient in nutrients, which might slow BSFL development. The nutritional value of larval feeding substrates may be improved by mixing in nutrient-rich substrates like chicken manure or soybean curd residue, for instance. Similarly, microbial fermentation may be used to digest lignocellulosic waste, releasing nutrients that are needed for the BSFL. In this mini-review, a thorough discussion has been conducted on the various waste biodegraded by the BSFL, their co-digestion and microbial fermentation of BSFL substrate, as well as the prospective applications and safety of the possible by-products that may be generated at the completion of the treatment process. Furthermore, this study examines the present gaps and challenges on the direction to the efficient application of BSF for waste management and the commercialization of its by-products.
Collapse
Affiliation(s)
- Kashif ur Rehman
- Department of Microbiology,
Faculty of Veterinary and Animal Sciences, Th Islamia University of
Bahawalpur, Pakistan
- Poultry Research Institute
Rawalpindi, Livestock and Dairy Development Department, Punjab,
Pakistan
- State Key Laboratory of
Agricultural Microbiology, National Engineering Research Center of Microbial
Pesticides, College of Life Science and Technology, Huazhong Agricultural
University, Wuhan, PR China
| | - Clemens Hollah
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Karin Wiesotzki
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Rashid ur Rehman
- Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | | | - Jibin Zhang
- State Key Laboratory of
Agricultural Microbiology, National Engineering Research Center of Microbial
Pesticides, College of Life Science and Technology, Huazhong Agricultural
University, Wuhan, PR China
| | - Longyu Zheng
- State Key Laboratory of
Agricultural Microbiology, National Engineering Research Center of Microbial
Pesticides, College of Life Science and Technology, Huazhong Agricultural
University, Wuhan, PR China
| | - Theresa Nienaber
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Volker Heinz
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| | - Kemal Aganovic
- DIL Deutsches Institut für
Lebensmitteltechnik e. V. – German Institute of Food Technologies,
Quakenbruck, Germany
| |
Collapse
|
22
|
Zhao J, Pan J, Zhang Z, Chen Z, Mai K, Zhang Y. Fishmeal Protein Replacement by Defatted and Full-Fat Black Soldier Fly Larvae Meal in Juvenile Turbot Diet: Effects on the Growth Performance and Intestinal Microbiota. AQUACULTURE NUTRITION 2023; 2023:8128141. [PMID: 37089257 PMCID: PMC10115534 DOI: 10.1155/2023/8128141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
A 12-week feeding trial was conducted to investigate the effect of the same fishmeal protein level replaced by black soldier fly larvae (Hermetia illucens) meal (BSFL) with different lipid contents on the growth performance and intestinal health of juvenile turbot (Scophthalmus maximus L.) (initial body weight 12.64 g). Three isonitrogenous and isolipidic diets were formulated: fish meal-based diet (FM), diets DF and FF, in which 14% fish meal protein of the FM diet was replaced by defatted and full-fat BSFL, respectively. There were no significant differences in growth performance, intestinal morphology, and mucosal barrier function between the DF and the FM group. However, diet FF markedly reduced the growth performance, intestinal perimeter ratio, and the gene expression of anti-inflammatory cytokine TGF-β (P < 0.05). Compared to group FF, the communities of intestinal microbiota in group DF were more similar to group FM. Moreover, diet DF decreased the abundance of some potential pathogenic bacteria and enriched the potential probiotics, such as Bacillus. Diet FF obviously altered the composition of intestinal microbiota and increased the abundance of some potential pathogenic bacteria. These results suggested that the application of defatted BSFL showed more positive effects on fish growth and intestinal health than the full-fat BSFL, and the intestinal microbiota was closely involved in these effects.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jintao Pan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhonghao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhichu Chen
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
23
|
Kaczor M, Bulak P, Proc-Pietrycha K, Kirichenko-Babko M, Bieganowski A. The Variety of Applications of Hermetia illucens in Industrial and Agricultural Areas-Review. BIOLOGY 2022; 12:25. [PMID: 36671718 PMCID: PMC9855018 DOI: 10.3390/biology12010025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Hermetia illucens (Diptera: Stratiomyidae, Linnaeus, 1978), commonly known as the black soldier fly (BSF), is a saprophytic insect, which in recent years has attracted significant attention from both the scientific community and industry. The unrestrained appetite of the larvae, the ability to forage on various organic waste, and the rapid growth and low environmental impact of its breeding has made it one of the insect species bred on an industrial scale, in the hope of producing fodder or other ingredients for various animals. The variety of research related to this insect has shown that feed production is not the only benefit of its use. H. illucens has many features and properties that could be of interest from the point of view of many other industries. Biomass utilization, chitin and chitosan source, biogas, and biodiesel production, entomoremediation, the antimicrobial properties of its peptides, and the fertilizer potential of its wastes, are just some of its potential uses. This review brings together the work of four years of study into H. illucens. It summarizes the current state of knowledge and introduces the characteristics of this insect that may be helpful in managing its breeding, as well as its use in agro-industrial fields. Knowledge gaps and under-studied areas were also highlighted, which could help identify future research directions.
Collapse
Affiliation(s)
- Monika Kaczor
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Piotr Bulak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Kinga Proc-Pietrycha
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Marina Kirichenko-Babko
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnitsky 15, 01030 Kyiv, Ukraine
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
24
|
Kuo IP, Liu CS, Yang SD, Liang SH, Hu YF, Nan FH. Effects of Replacing Fishmeal with Defatted Black Soldier Fly ( Hermetia illucens Linnaeus) Larvae Meal in Japanese Eel ( Anguilla japonica) Diet on Growth Performance, Fillet Texture, Serum Biochemical Parameters, and Intestinal Histomorphology. AQUACULTURE NUTRITION 2022; 2022:1866142. [PMID: 36860438 PMCID: PMC9973222 DOI: 10.1155/2022/1866142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 06/18/2023]
Abstract
An 8-week feeding trial was conducted to investigate the effects of replacing fishmeal with defatted black soldier fly larvae meal (DBSFLM) in the diets of Japanese eel on their growth performance, fillet texture, serum biochemical parameters, and intestinal histomorphology. Six isoproteic (520 g kg-1), isolipidic (80 g kg-1), and isoenergetic (15 MJ kg-1) diets were formulated with fishmeal replacement levels of 0% (R0), 15% (R15), 30% (R30), 45% (R45), 60% (R60), and 75% (R75). The growth performance, feed utilization efficiency, survival rate, serum liver function enzymes, antioxidant ability, and lysozyme activity of fish were not affected (P > 0.05) by DBSFLM. However, the crude protein and cohesiveness of the fillet in groups R60 and R75 significantly decreased, and the fillet hardness significantly increased (P < 0.05). Additionally, the intestinal villus length significantly decreased in the R75 group, and the goblet cell densities were significantly lower in the R45, R60, and R75 groups (P < 0.05). Overall, high levels of DBSFLM did not affect growth performance and serum biochemical parameters but significantly altered fillet proximate composition and texture and intestinal histomorphology (P < 0.05). The optimal fishmeal replacement level is 30% with 184 g kg-1 DBSFLM.
Collapse
Affiliation(s)
- I-Pei Kuo
- Freshwater Aquaculture Research Center Chupei Station, Fisheries Research Institute, Council of Agriculture, No. 111, Tai-Ho, Zhubei, Hsinchu 30267, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Beining Road, Keelung 202301, Taiwan
| | - Ching-Shuo Liu
- Freshwater Aquaculture Research Center Chupei Station, Fisheries Research Institute, Council of Agriculture, No. 111, Tai-Ho, Zhubei, Hsinchu 30267, Taiwan
| | - Shuenn-Der Yang
- Freshwater Aquaculture Research Center Chupei Station, Fisheries Research Institute, Council of Agriculture, No. 111, Tai-Ho, Zhubei, Hsinchu 30267, Taiwan
| | - Shih-Hsiang Liang
- Animal Industry Division, Livestock Research Institute, Council of Agriculture, No. 112, Farm Road, Hsinhua, Tainan, 71246, Taiwan
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Beining Road, Keelung 202301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No. 2, Beining Road, Keelung 202301, Taiwan
| |
Collapse
|
25
|
Lin TH, Wang DH, Zou H, Zheng Y, Fu SF. Effects of salvaged cyanobacteria content on larval development and feedstock humification during black soldier fly larvae (Hermetia illucens) composting. ENVIRONMENTAL RESEARCH 2022; 215:114401. [PMID: 36167112 DOI: 10.1016/j.envres.2022.114401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria salvage is widely used to deal with massive cyanobacterial blooms. Improper disposal of salvaged cyanobacteria would cause secondary pollution. Black soldier fly (Hermetia illucens) larvae (BSFL) can bio-convert organic wastes into larval biomass, which is rich in protein and lipid. This study evaluated the possibility of using BSFL composting for salvaged cyanobacteria treatment. Results showed that increasing salvaged cyanobacteria waste (CW) content (from 0 to 50%, dry weight basis) extended BSFL development time, e.g., BSFL fed with 50% CW needed 14 days more to finish development than Control (0% CW). The CW content (0-20%) in feeding substrates had no significant effect on BSFL body length and weight. Whereas further increase of CW content (from 20 to 50%) led to significant reductions in substrate-to-BSFL biomass conversion ratio, body size, body weight, and crude protein content of BSFL. Meanwhile, the presence of salvaged cyanobacteria in the feeding substrate reduced the degradation efficiency of feeding substrate. The dissolved organic matter (DOM) results demonstrated that the increased salvaged cyanobacteria content made it more difficult for BSFL to degrade the feeding substrate into simple organic matter and further into humic-like substances. Furthermore, salvaged cyanobacteria in feeding substrates affected the intestinal microbial community significantly. With 20% CW content in the feeding substrate, the relative abundance of Firmicutes decreased from 92.43 to 81.24%, while the relative abundance of Proteobacteria and Bacteroidetes increased from 4.10 to 2.93-8.75% and 7.51%, respectively. BSFL composting is feasible to convert salvaged cyanobacteria into insect biomass. However, the salvaged cyanobacteria content in the feeding substrate should be carefully controlled (e.g., less than 30%).
Collapse
Affiliation(s)
- Tian-Hui Lin
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
| | - Dong-Hui Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China
| | - Hua Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, PR China.
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS, 66506, USA
| | - Shan-Fei Fu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu Province, 214122, PR China; Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China.
| |
Collapse
|
26
|
Bulut M, Zeybekoğlu Ü, Kökdener M. Effects of Tissue Type and Temperature on Selected Life-History Traits of the Flesh Fly, Sarcophaga crassipalpis (Macquart, 1839) (Diptera: Sarcophagidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1921-1927. [PMID: 36256537 DOI: 10.1093/jme/tjac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 06/16/2023]
Abstract
The flesh fly, Sarcophaga crassipalpis Macquart 1839 (Diptera: Sarcophagidae), colonizes estimation of the minimum post-mortem interval (min-PMI). This study examined the effects of different types of tissues and temperature on the development of S. crassipalpis. To the best of our knowledge, the present study is the first to investigate the effects of life-history information of S. crassipalpis. Larvae were reared on three tissue types, chicken heart, bovine minced meat, and bovine tongue, at five temperatures, 15, 20, 25, 30, and 32°C. Pupal and larval development time, adult weight, and pupal and larval survival differed significantly for tissue type and temperature. Temperature had a significant effect on pupal weight but tissue type did not significantly affect pupal weight. The duration of the larval and pupal stages (except of chicken heart, 30°C) decreased with increasing temperature, except for 32°C, in all tissue types. Larval survival was lowest at 32°C in bovine minced meat, bovine tongue, and chicken heart, and at 32°C, all pupae failed to reach the adult stage in minced meat. The results of this study highlight the necessity of considering larval diet and temperature in forensic investigations.
Collapse
Affiliation(s)
- Meltem Bulut
- Biology Department, Science Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Ünal Zeybekoğlu
- Biology Department, Science Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Meltem Kökdener
- Forensic Science Program, Graduate Education Institute, Ondokuz Mayıs University, 55139, Samsun, Turkey
- Health Science Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| |
Collapse
|
27
|
Lu S, Taethaisong N, Meethip W, Surakhunthod J, Sinpru B, Sroichak T, Archa P, Thongpea S, Paengkoum S, Purba RAP, Paengkoum P. Nutritional Composition of Black Soldier Fly Larvae ( Hermetia illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review. INSECTS 2022; 13:insects13090831. [PMID: 36135532 PMCID: PMC9502457 DOI: 10.3390/insects13090831] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/09/2023]
Abstract
The rapidly growing population has increased demand for protein quantities and, following a shortage of plant-based feed protein sources and the prohibition of animal-based feed protein, has forced the search for new sources of protein. Therefore, humans have turned their attention to edible insects. Black soldier fly larvae (BSFL) (Hermetia illucens L.) are rich in nutrients such as fat, protein and high-quality amino acids and minerals, making them a good source of protein. Furthermore, BSFL are easily reared and propagated on any nutrient substrate such as plant residues, animal manure and waste, food scraps, agricultural byproducts, or straw. Although BSFL cannot completely replace soybean meal in poultry diets, supplementation of less than 20% has no negative impact on chicken growth performance, biochemical indicators and meat quality. In pig studies, although BSFL supplementation did not have any negative effect on growth performance and meat quality, the feed conversion ratio (FCR) was reduced. There is obviously less research on the feeding of BSFL in pigs than in poultry, particularly in relation to weaning piglets and fattening pigs; further research is needed on the supplementation level of sows. Moreover, it has not been found that BSFL are used in ruminants, and the next phase of research could therefore study them. The use of BSFL in animal feed presents some challenges in terms of cost, availability and legal and consumer acceptance. However, this should be considered in the context of the current shortage of protein feed and the nutritional value of BSFL, which has important research significance in animal production.
Collapse
Affiliation(s)
- Shengyong Lu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Nittaya Taethaisong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Weerada Meethip
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Jariya Surakhunthod
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Boontum Sinpru
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Thakun Sroichak
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Pawinee Archa
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Sorasak Thongpea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Muang, Nakhon Ratchasima 30000, Thailand
| | - Rayudika Aprilia Patindra Purba
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand or
- Correspondence:
| |
Collapse
|
28
|
Arnone S, De Mei M, Petrazzuolo F, Musmeci S, Tonelli L, Salvicchi A, Defilippo F, Curatolo M, Bonilauri P. Black soldier fly (Hermetia illucens L.) as a high-potential agent for bioconversion of municipal primary sewage sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64886-64901. [PMID: 35474429 PMCID: PMC9481477 DOI: 10.1007/s11356-022-20250-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
The treatment of municipal wastewater produces clean water and sewage sludge (MSS), the management of which has become a serious problem in Europe. The typical destination of MSS is to spread it on land, but the presence of heavy metals and pollutants raises environmental and health concerns. Bioconversion mediated by larvae of black soldier fly (BSFL) Hermetia illucens (Diptera, Stratiomyidae: Hermetiinae) may be a strategy for managing MSS. The process adds value by generating larvae which contain proteins and lipids that are suitable for feed and/or for industrial or energy applications, and a residue as soil conditioner. MSS from the treatment plant of Ladispoli (Rome province) was mixed with an artificial fly diet at 50% and 75% (fresh weight basis) to feed BSFL. Larval performance, substrate reduction, and the concentrations of 12 metals in the initial and residual substrates and in larval bodies at the end of the experiments were assessed. Larval survival (> 96%) was not affected. Larval weight, larval development, larval protein and lipid content, and waste reduction increased in proportion the increase of the co-substrate (fly diet). The concentration of most of the 12 elements in the residue was reduced and, in the cases of Cu and Zn, the quantities dropped under the Italian national maximum permissible content for fertilizers. The content of metals in mature larvae did not exceed the maximum allowed concentration in raw material for feed for the European Directive. This study contributes to highlight the potential of BSF for MSS recovery and its valorization. The proportion of fly diet in the mixture influenced the process, and the one with the highest co-substrate percentage performed best. Future research using other wastes or by-products as co-substrate of MSS should be explored to determine their suitability.
Collapse
Affiliation(s)
- Silvia Arnone
- ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development - TERIN-BBC - Casaccia, Via Anguillarese 301, 00123, S. Maria Di Galeria, Rome, Italy.
| | - Massimiliano De Mei
- ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development - TERIN-BBC - Casaccia, Via Anguillarese 301, 00123, S. Maria Di Galeria, Rome, Italy
| | - Francesco Petrazzuolo
- ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development - TERIN-BBC - Casaccia, Via Anguillarese 301, 00123, S. Maria Di Galeria, Rome, Italy
| | - Sergio Musmeci
- ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development - SSPT-BIOAG - Casaccia, Via Anguillarese 301, 00123, S. Maria Di Galeria, Rome, Italy
| | | | | | - Francesco Defilippo
- IZSLER - Istituto Zooprofilattico Sperimentale Lombardia ed Emilia-Romagna, Via A. Bianchi, 7/9, 25124, Brescia, Italy
| | - Michele Curatolo
- IZSLER - Istituto Zooprofilattico Sperimentale Lombardia ed Emilia-Romagna, Via A. Bianchi, 7/9, 25124, Brescia, Italy
| | - Paolo Bonilauri
- IZSLER - Istituto Zooprofilattico Sperimentale Lombardia ed Emilia-Romagna, Via A. Bianchi, 7/9, 25124, Brescia, Italy
| |
Collapse
|
29
|
Potential Applications of Frass Derived from Black Soldier Fly Larvae Treatment of Food Waste: A Review. Foods 2022; 11:foods11172664. [PMID: 36076850 PMCID: PMC9455751 DOI: 10.3390/foods11172664] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The disposal of large amounts of food waste has caused serious environmental pollution and financial losses globally. Compared to alternative disposal methods (landfills, incineration, and anaerobic digestion), composting by black soldier fly larvae (BSFL) is a promising alternative for food waste management. Despite extensive research into larval biomass, another valuable by-product generated from BSFL composting is BSFL frass. However, limited information is available for its potential application. The applications of BSFL frass can be intensified by understanding its physicochemical characteristics, benefits, and challenges of BSFL frass derived from food waste. BSFL frass is harvested after 9–23 days of the experiment, depending on the substrate used in the composting process. The generated BSFL frass could exceed 33% of the original weight of the substrate. The physicochemical characteristics of BSFL frass are as follows: the temperature after harvest is 24 °C to 27 °C, pH is 5.6–8.0, moisture content is 30 to 72%, C/N ratio is 8:1 to 27:1, high nitrogen, phosphorus, and potassium (NPK) content, and low heavy metal content. This paper reviews the characteristics, benefits, and application of BSFL frass. It will also investigate the challenges of using food waste substrates to produce BSFL frass, as well as the best way to pre-treat the food waste substrate and post-treat the BSFL frass.
Collapse
|
30
|
Fu SF, Wang DH, Xie Z, Zou H, Zheng Y. Producing insect protein from food waste digestate via black soldier fly larvae cultivation: A promising choice for digestate disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154654. [PMID: 35307441 DOI: 10.1016/j.scitotenv.2022.154654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The treatment of food waste digestate with high salinity is a big challenge. This paper evaluated the possibility of using black soldier fly larvae for food waste digestate disposal and insect protein production. Results showed that both digestates from hydrogen and methane fermentations were rich in protein and lipid contents, which benefited the BSFL cultivation. The BSFL reared on digestates from hydrogen and methane fermentations of food waste performed better in pre-pupal weight (19.12% and 41.13% higher, respectively), body length (3.62% and 18.21% higher, respectively) and crude protein contents (7.85% and 39.05% higher, respectively) than that reared on raw food waste. In addition, the maximum body weight growth rate (Rm) of BSFL cultivated on both digestates were 28.28% and 47.10% higher than that of BSFL cultivated on raw food waste, respectively. During BSFL cultivation, organic matter reduction between 40.97% and 46.07% were achieved. Digestates from hydrogen and methane fermentations represent favorable feeding substrates for BSFL cultivation. Using BSFL to treat AD digestate not only provides a digestate disposal approach, but also produces insect biomass and organic fertilizer as value-added byproducts, which shows tremendous potential in digestate disposal.
Collapse
Affiliation(s)
- Shan-Fei Fu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, PR China.
| | - Dong-Hui Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhong Xie
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Hua Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
31
|
Li XY, Mei C, Luo XY, Wulamu D, Zhan S, Huang YP, Yang H. Dynamics of the intestinal bacterial community in black soldier fly larval guts and its influence on insect growth and development. INSECT SCIENCE 2022. [PMID: 35811567 DOI: 10.1111/1744-7917.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is a prominent insect for the bioconversion of various organic wastes. As a saprotrophic insect, the BSF inhabits microbe-rich environments. However, the influences of the intestinal microorganisms on BSF growth and development are not very clear. In this study, the dynamics of the intestinal bacterial community of BSF larvae (BSFL) were analyzed using pyrosequencing. Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the most prevalent bacterial phyla in the intestines of all larval instars. The dynamic changes in bacterial community compositions among different larval instars were striking at the genus level. Klebsiella, Clostridium, Providencia, and Dysgonomonas were the relatively most abundant bacteria in the 1st- to 4th-instar BSFL, respectively. Dysgonomonas and Providencia also dominated the 5th- and 6th-instar larvae, at ratios of 31.1% and 47.2%, respectively. In total, 148 bacterial strains affiliated with 20 genera were isolated on different media under aerobic and anaerobic conditions. Among them, 6 bacteria, BSF1-BSF6, were selected for further study. The inoculation of the 6 isolates independently into germ-free BSFL feeding on an artificial diet showed that all the bacteria, except BSF4, significantly promoted BSF growth and development compared with the germ-free control. Citrobacter, Dysgonomonas, Klebsiella, Ochrobactrum, and Providencia promoted BSF development significantly by increasing the weight gains of larvae and pupae, as well as increasing the prepupae and eclosion rates. In addition, Citrobacter, Klebsiella and Providencia shortened the BSF life cycle significantly. The results illustrate the promotive effects of intestinal bacteria on BSF growth and development.
Collapse
Affiliation(s)
- Xin-Yu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Cheng Mei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xing-Yu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dilinuer Wulamu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
32
|
Improving the Lipid Profile of Black Soldier Fly (Hermetia illucens) Larvae for Marine Aquafeeds: Current State of Knowledge. SUSTAINABILITY 2022. [DOI: 10.3390/su14116472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The replacement of fish meal and fish oil by insect-based ingredients in the formulation of marine aquafeeds can be an important step towards sustainability. To pursue this goal, the modulation of the lipid profile of black soldier fly larvae (Hermetia illucens) has received great attention. While its nutritional profile can shift with diet, the ability to modulate its lipidome is yet to be understood. The present work provides an overview of the lipid modulation of H. illucens larvae through its diet, aiming to produce a more suitable ingredient for marine aquafeeds. Marine-based substrates significantly improve the lipid profile of H. illucens larvae, namely its omega-3 fatty acids profile. An improvement of approximately 40% can be achieved using fish discards. Substantial levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two essential fatty acids for marine fish and shrimp species, were recorded in H. illucens larvae fed on fish discards and coffee silverskin with Schyzochytrium sp. Unfortunately, these improvements are still deeply connected to marine-based bioresources, some still being too costly for use at an industrial scale (e.g., microalgae). New approaches using solutions from the biotechnology toolbox will be decisive to make H. illucens larvae a feasible alternative ingredient for marine aquafeeds without having to rely on marine bioresources.
Collapse
|
33
|
A Review of Organic Waste Treatment Using Black Soldier Fly (Hermetia illucens). SUSTAINABILITY 2022. [DOI: 10.3390/su14084565] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The increase in solid waste generation is caused primarily by the global population growth that resulted in urban sprawl, economic development, and consumerism. Poor waste management has adverse impacts on the environment and human health. The recent years have seen increasing interest in using black soldier fly (BSF), Hermetia illucens, as an organic waste converter. Black soldier fly larvae (BSFL) feed voraciously on various types of organic waste, including food wastes, agro-industrial by-products, and chicken and dairy manure, and reduce the initial weight of the organic waste by about 50% in a shorter period than conventional composting. The main components of the BSFL system are the larvero, where the larvae feed and grow, and the fly house, where the adults BSF live and reproduce. It is essential to have a rearing facility that maintains the healthy adult and larval BSF to provide a sufficient and continuous supply of offspring for organic waste treatment. The BSF organic waste processing facility consists of waste pre-processing, BSFL biowaste treatment, the separation of BSFL from the process residue, and larvae and residue refinement into marketable products. BSFL digest the nutrients in the wastes and convert them into beneficial proteins and fats used to produce animal feed, and BSFL residue can be used as an organic fertilizer. This review summarizes the BSFL treatment process to provide an in-depth understanding of the value of its by-products as animal feed and organic fertilizer.
Collapse
|
34
|
Siddiqui SA, Ristow B, Rahayu T, Putra NS, Widya Yuwono N, Nisa' K, Mategeko B, Smetana S, Saki M, Nawaz A, Nagdalian A. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:1-13. [PMID: 35030456 DOI: 10.1016/j.wasman.2021.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/21/2021] [Accepted: 12/31/2021] [Indexed: 05/12/2023]
Abstract
There are two major problems that we are facing currently. Firstly, a growing human population continues to contribute to the increased food demand. Secondly, the volume of organic waste produced will threaten human health and the quality of the environment. Recently, there is an increasing number of efforts placed into farming insect biomass to produce alternative feed ingredients. Black soldier fly larvae (BSFL), Hermetia illucens have proven to convert organic waste into high-quality nutrients for pet foods, fish and poultry feeds, as well as residue fertilizer for soil amendment. However, better BSFL feed formulation and feeding approaches are necessary for yielding a higher nutrient content of the insect body, and if performed efficiently, whilst converting waste into higher value biomass. Lastly, this paper reveals that BSFL, in fact, thrives in various ranges of organic matter composition and with simple rearing systems.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, 49610 Quakenbrück, Germany.
| | - Bridget Ristow
- Nutritionhub (Pty) Ltd Consultancy Firm. Doornbosch Centre, R44, Strand Road, Stellenbosch, South Africa
| | - Teguh Rahayu
- CV HermetiaTech, Voza Premium Office 20th Floor, Jl. HR. Muhammad No. 31A, Putat Gede, Surabaya 60189, Jawa Timur, Indonesia.
| | - Nugroho Susetya Putra
- Universitas Gadjah Mada, Faculty of Agriculture, Department of Plant Protection, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281, Indonesia.
| | - Nasih Widya Yuwono
- Universitas Gadjah Mada, Faculty of Agriculture, Department of Soil Science, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281, Indonesia.
| | - Khoirun Nisa'
- Sepuluh November Institute of Technology, Department of Environmental Engineering, Sukolilo, Surabaya 60111, Jawa Timur, Indonesia
| | - Bosco Mategeko
- Rwandan Society of Food Science and Technology (RFST), Rwanda
| | - Sergiy Smetana
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straβe 7, 49610 Quakenbrück, Germany.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asad Nawaz
- Institute for Advanced Study, Shenzhen University, Shenzhen, PR China.
| | - Andrey Nagdalian
- Food Technology and Engineering Department, North-Caucasus Federal University, Pushkina Street 1, 355009 Stavropol, Russia; Saint Petersburg State Agrarian University, Peterburgskoe Highway 2, 196601, Pushkin, Saint Petersburg, Russia.
| |
Collapse
|
35
|
Yuan MC, Hasan HA. Effect of Feeding Rate on Growth Performance and Waste Reduction Efficiency of Black Soldier Fly Larvae (Diptera: Stratiomyidae). Trop Life Sci Res 2022; 33:179-199. [PMID: 35651642 PMCID: PMC9128650 DOI: 10.21315/tlsr2022.33.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaysia like many other developing countries is facing the challenge of poor waste management. This research was conducted to determine the effect of black soldier fly (BSF) larvae in decomposing food waste, palm oil waste, fish waste and yard waste. The development time and waste reduction efficiency of four different organic materials were evaluated. In this study, BSF larvae were fed with all four types of waste at five feeding rates of 0.25, 0.50, 1.00, 1.50 and 2.00 g larva-1 day-1 with three replicates per feeding rate until the larvae reached the pre-pupae stage. During the study, larval development time, larval mortality, pre-pupae weight and waste reduction indexes (WRI) were determined. Food waste and yard waste achieved the highest WRI of 4.43 ± 0.06 and 0.71 ± 0.01, respectively at the feeding rate of 0.50 g larva-1 day-1 while palm oil waste and fish waste attained the highest WRI values at feeding rates of 1.00 g larva-1 day-1 (1.89 ± 0.02) and 0.25 g larva-1 day-1 (3.75 ± 0.24), respectively. The results showed that both variables significantly influenced the bioconversion process, but waste reduction efficiency was the most influential element.
Collapse
Affiliation(s)
- Moo Chee Yuan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| | - Hadura Abu Hasan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
- Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
36
|
Khan AH, López-Maldonado EA, Khan NA, Villarreal-Gómez LJ, Munshi FM, Alsabhan AH, Perveen K. Current solid waste management strategies and energy recovery in developing countries - State of art review. CHEMOSPHERE 2022; 291:133088. [PMID: 34856242 DOI: 10.1016/j.chemosphere.2021.133088] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Solid waste generation has rapidly increased due to the worldwide population, urbanization, and industrialization. Solid waste management (SWM) is a significant challenge for a society that arises local issues with global consequences. Thus, solid waste management strategies to recycle waste products are promising practices that positively impact sustainable goals. Several developed countries possess excellent solid waste management strategies to recycle waste products. Developing countries face many challenges, such as municipal solid waste (MSW) sorting and handling due to high population density and economic instability. This mismanagement could further expedite harmful environmental and socioeconomic concerns. This review discusses the current solid waste management and energy recovery production in developing countries; with statistics, this review provides a comprehensive revision on energy recovery technologies such as the thermochemical and biochemical conversion of waste with economic considerations. Furthermore, the paper discusses the challenges of SWM in developing countries, including several immediate actions and future policy recommendations for improving the current status of SWM via harnessing technology. This review has the potential of helping municipalities, government authorities, researchers, and stakeholders working on MSW management to make effective decisions for improved SWM for achieving sustainable development.
Collapse
Affiliation(s)
- Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, P.O. Box. 706, Jazan 45142, Saudi Arabia; School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau, Pinang, Malaysia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP, 22390, Tijuana, Baja California, Mexico
| | - Nadeem A Khan
- Civil Engineering Department, Jamia Millia Islamia, New Delhi, India.
| | - Luis Jesús Villarreal-Gómez
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, CP, 22390, Tijuana, Baja California, Mexico; Facultad de Ciencias de La Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd Universitario 1000, Unidad Valle de Las Palmas, 22260, Tijuana, Baja California, Mexico
| | - Faris M Munshi
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Abdullah H Alsabhan
- Department of Civil Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
37
|
Singh A, Marathe D, Raghunathan K, Kumari K. Effect of Different Organic Substrates on Selected Life History Traits and Nutritional Composition of Black Soldier fly (Hermetia illucens). ENVIRONMENTAL ENTOMOLOGY 2022; 51:182-189. [PMID: 34864905 DOI: 10.1093/ee/nvab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Black soldier fly (Hermetia illucens L. [Diptera: Stratiomyidae]) has gained huge popularity in different industrial and commercial sectors because of its excellent potential to treat organic waste and high biomass production. As the industrial application of BSF is expanding at accelerated rates, there is a need to optimize its mass scale production where the organic substrates play a very crucial role in optimal growth and development. The present study deals with the investigation of different life history attributes of BSF such as larval and adult weights, survival, pupation rate, and the development time as the function of different organic substrates [fruits and vegetable mix (T1); wheat bran, soy, and corn meal mix (T2); and the dairy manure (T3)]. The larval, pupal, and adult weights differed across all three treatments (P < 0.05). There was no significant difference in the survival rate of larvae among T1 and T2 however, T3 differed significantly from T1 and T2. Likewise, the pupation rate and the development time differed significantly between the three treatments. Results indicated that the BSF development was least in dairy manure treatment and therefore, higher percent mortality and higher development time were observed. However, to deal with the problems of waste management and treatment, BSF larvae can be successfully employed for the treatment of any type of waste since it showed significant treatment efficiencies.
Collapse
Affiliation(s)
- Anshika Singh
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Deepak Marathe
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Karthik Raghunathan
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata 700 107, India
| |
Collapse
|
38
|
Worming the Circular Economy for Biowaste and Plastics: Hermetia illucens, Tenebrio molitor, and Zophobas morio. SUSTAINABILITY 2022. [DOI: 10.3390/su14031594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The negative impact of the modern-day lifestyle on the environment was aggravated during the COVID-19 pandemic through the increased use of single-use plastics from food take-aways to medical supplies. Similarly, the closure of food outlets and disrupted supply chains have also resulted in significant food wastage. As the pandemic rages on, the aggravation of increased waste becomes an increasingly urgent problem that threatens the biodiversity, ecosystems, and human health worldwide through pollution. While there are existing methods to deal with organic and plastic waste, many of the solutions cause additional problems. Increasingly proposed as a natural solution to man-made problems, there are insect solutions for dealing with the artificial and organic waste products and moving towards a circular economy, making the use of natural insect solutions commercially sustainable. This review discusses the findings on how some of these insects, particularly Hermetia illucens, Tenebrio molitor, and Zophobas morio, can play an increasingly important role in food and plastics, with a focus on the latter.
Collapse
|
39
|
HE S, LIAN W, LIU X, XU W, WANG W, QI S. Transesterification synthesis of high-yield biodiesel from black soldier fly larvae by using the combination of Lipase Eversa Transform 2.0 and Lipase SMG1. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.103221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shi HE
- South China University of Technology, China
| | - Weishuai LIAN
- Henan University of Animal Husbandry and Economy, China
| | - Xuan LIU
- South China University of Technology, China
| | - Wanli XU
- South China University of Technology, China
| | - Weifei WANG
- Sericultural and Agri-food Research Institute, China
| | - Suijian QI
- South China University of Technology, China
| |
Collapse
|
40
|
The project INSECT4CITY: assessment of benefits and risks of insect-based bioconversion for recycling bio-waste from urban and peri-urban areas. Proc Nutr Soc 2022. [DOI: 10.1017/s0029665122000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Marathe D, Raghunathan K, Singh A, Thawale P, Kumari K. A Modified Lysimeter Study for Phyto-Treatment of Moderately Saline Wastewater Using Plant-Derived Filter Bedding Materials. Front Microbiol 2021; 12:767132. [PMID: 34938280 PMCID: PMC8685380 DOI: 10.3389/fmicb.2021.767132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
The present study focuses on determining the phyto-treatment efficiency for treatment of moderately saline wastewater using organic raw materials, such as rice husk, coconut husk, rice straw, and charcoal. The moderately saline wastewater with total dissolved solids (TDS) concentration up to 6143.33 ± 5.77 mg/L was applied to the lysimeters at the rate of 200 m3 ha-1 day-1 in five different lysimeter treatments planted with Eucalyptus camaldulensis (T1, T2, T3, T4, and T5). T1 was a control without any filter bedding material, whereas rice straw, rice husk, coconut husk, and charcoal were used as filter bedding materials in the T2, T3, T4, and T5 treatment systems, respectively. Each treatment showed significant treatment efficiency wherein T3 had the highest removal efficiency of 76.21% followed by T4 (67.57%), T5 (65.18%), T2 (46.46%), and T1 (45.5%). T3 and T4 also showed higher salt accumulation, such as sodium (Na) and potassium (K). Further, the pollution load in terms of TDS and chemical and biological oxygen demand significantly reduced from leachate in the T3 and T4 treatments in comparison with other treatments. Parameters of the soil, such as electrical conductivity, exchangeable sodium percentage, and cation exchange capacity did not show values corresponding to high salinity or sodic soils, and therefore, no adverse impact on soil was observed in the present study. Also, Eucalyptus camaldulensis plant species showed good response to wastewater treatment in terms of growth parameters, such as root/shoot weight and nitrogen, phosphorus, and potassium (NPK) uptake, plant height, biomass, and chlorophyll content. Root and shoot dry weight were in the order T3 (51.2 and 44.6 g)>T4 (49.3 and 43.5 g) > T5 (47.6 and 40.5 g) > T2 (46.9 and 38.2 g) > T1 (45.6 and 37.1 g). Likewise, the total chlorophyll content was highest in T3 (12.6 μg/g) followed by T4 (12.3 μg/g), T5 (11.9 μg/g), T2 (11.5 μg/g), and the control, that is, T1 (11.0 μg/g). However, the most promising results were obtained for T3 and T4 treatments in comparison with the control (T1), which implies that, among all organic raw materials, coconut and rice husks showed the highest potential for salt accumulation and thereby wastewater treatment. Conclusively, the findings of the study suggest that organic raw material-based amendments are useful in managing the high salts levels in both plants and leachates.
Collapse
Affiliation(s)
- Deepak Marathe
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Karthik Raghunathan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anshika Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prashant Thawale
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Kolkata Zonal Centre, Kolkata, India
| |
Collapse
|
42
|
Borkent S, Hodge S. Glasshouse Evaluation of the Black Soldier Fly Waste Product HexaFrass™ as an Organic Fertilizer. INSECTS 2021; 12:insects12110977. [PMID: 34821778 PMCID: PMC8625123 DOI: 10.3390/insects12110977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In recent years farmers have relied on highly efficient synthetic nitrogen fertilizers to achieve increased yields. However, the extensive application of nitrogen-based fertilizers is now associated with several negative impacts on the environment, such as pollution of waterways and eutrophication of lakes and estuaries. To promote more sustainable food production, less environmentally damaging methods of adding nutrients and organic matter to soils are needed. One potential organic fertilizer has arisen recently as a by-product of insect farming. Mass production of the black soldier fly (BSF; Hermetia illucens L.) results in the production of waste or frass, which is high in organic matter and contains essential plant nutrients such as nitrogen, phosphorous and potassium. In this study, it was found that one such product, HexaFrass™, improved the shoot and root growth of several herb and vegetable plants when grown under glasshouse conditions, and had similar effects to other commonly-used organic fertilizers, such as chicken manure pellets. As HexaFrass™ is a waste by-product, and the BSF are themselves raised on other food or organic wastes, the use of BSF frass has good potential as a sustainable, more environmentally-friendly, organic soil amendment. Abstract The mass farming of the black soldier fly (BSF; Hermetia illucens L.), to produce insect-based feed for livestock and fish, results in considerable amounts of insect frass, which contains substantial amounts of organic matter and bioavailable nutrients. Insect frass has shown good potential as a soil amendment and organic fertilizer. This study examined the effects of HexaFrass™ on the growth of common vegetables and herbs under glasshouse conditions. In an organically-rich potting mix, HexaFrass™ increased shoot dry weight by an average of 25%, although this effect was variable among test plants. In other trials, application of HexaFrass™ caused an increase in plant growth similar to that obtained by applying chicken manure and a commercial organic fertilizer. Increases in shoot and root dry weight showed quadratic relationships with HexaFrass™ dose, indicating that application of excessive quantities could lead to plant inhibition. Shoot:root dry matter ratio tended to increase with HexaFrass™ dose suggesting there was no specific stimulation or enhancement of root growth. Overall, these results provide further evidence of the potential of insect frass as an effective organic fertilizer for vegetables and herbs.
Collapse
|
43
|
Sustainable Waste Management at Household Level with Black Soldier Fly Larvae (Hermetia illucens). SUSTAINABILITY 2021. [DOI: 10.3390/su13179722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Waste management service is inefficient in peri-urban and rural areas where biowaste is a major component of the household waste produced. Biowaste recycling using black soldier fly larvae (BSFL) at source can reduce the burden on the authorities and add economic value to a yet underutilized resource. This study evaluated the practicability of BSFL bin use at the household level to handle kitchen biowaste by placing three bins per house after 15 days interval of larval feeding. It was found that 50% of the households contacted cooperated well to continue the experiment. A set of instructions for handling BSFL bins based on reasons of agreement and disagreement was developed and shared. Key parameters to evaluate waste treatment performance and larval development were waste dry matter weight reduction (89.66%, SD 6.77%), volumetric reduction (81.3%, SD 4.8), final prepupal dry weight (69 mg/larvae, SD 7.1), biomass conversion rate (12.9%, SD 1.7), metabolism (77.3%, SD 6.0) and residue (10.4%, SD 6.8). On average, 87.7% (SD 9.1) of waste was actually digested, with 16.6% (SD 2.2) efficiently converted into biomass. Initial moisture content of waste was found to be more significant for achieving greater waste dry weight reduction as compared with the feeding rate. Source separation of biowaste and cooperation between households and authorities may lead to successful implementation of BSFL-assisted biowaste bins.
Collapse
|
44
|
Raghunathan K, Marathe D, Singh A, Thawale P. Organic waste amendments for restoration of physicochemical and biological productivity of mine spoil dump for sustainable development. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:599. [PMID: 34432167 DOI: 10.1007/s10661-021-09379-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Rehabilitation of degraded lands due to mining and other activities requires rebuilding of the appropriate soil structure and microbial integrity. Organic wastes, in particular plant-based materials, play a vital role in restoration of degraded land when used as amendments for topsoil integrated with microbe-assisted phytoremediation. In this present study, a biotechnological approach using the combination of organic waste amendments, i.e., ETP (effluent treatment plant), sludge from sugarcane and paper industry, and the press mud respectively along with microbial and fungal inoculum isolated from the soil rhizosphere have been applied to study the influence on fertility and productivity of mine spoil from manganese and coal dumps. The organic amendments applied as 100-ton ha-1 and application of biofertilizers boosted the survival of plants such as Tectona grandis (Teak), Dalbergia sisso (North Indian rosewood), Phyllanthus emblica (Indian gooseberry), Gmelina arborea (Gamhar), and Acacia auriculiformis (Earpod wattle) from 80 to 100% with robust growth and development during the short span of 25 years. The physicochemical attributes of soil and the microbial count also increased significantly. The pH of mine soil dumps slightly shifted toward alkaline conditions (7.4 to 7.8) whereas bulk density, porosity, and the water holding capacity were greatly improved. Other than this, the nutrient status of mine dump soil and the plants such as available nitrogen, phosphorus, potassium and the organic carbon content in soil were improvised to a greater extent simultaneously decreasing the available manganese concentration. The findings of the study assure a better land reclamation and restoration approach.
Collapse
Affiliation(s)
- Karthik Raghunathan
- CSIR- National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Deepak Marathe
- CSIR- National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Anshika Singh
- CSIR- National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Prashant Thawale
- CSIR- National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
45
|
Growth Performance, Waste Reduction Efficiency and Nutritional Composition of Black Soldier Fly ( Hermetia illucens) Larvae and Prepupae Reared on Coconut Endosperm and Soybean Curd Residue with or without Supplementation. INSECTS 2021; 12:insects12080682. [PMID: 34442248 PMCID: PMC8396427 DOI: 10.3390/insects12080682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Black soldier fly (BSF, Hermetia illucens) larvae have a high potential to convert organic waste into high-value products. However, the growth performance, waste reduction efficiency, and chemical composition of BSF larvae are greatly influenced by the rearing substrate. This study focused on investigating the growth performance, waste reduction efficiency, and nutritional composition of BSF larvae reared on different ratios of coconut endosperm (C) and soybean curd residue (S), with or without supplementation, compared to standard diets (Gainesville: G and starter chicken diet: CK). The results showed that BSF larvae fed CK has the highest larval weight, followed by those fed coconut endosperm and soybean curd residue at a ratio of 20:80 (C20S80), and coconut endosperm and soybean curd residue at a ratio of 50:50 (C50S50) without supplementation. The greatest waste reduction efficiency was observed in the G, C50S50, and C20S80 groups without supplementation. The highest crude protein content in larvae was presented in the G and C20S80 groups followed by the CK and C50S50 groups. Therefore, equal proportions of C and S without supplementation is likely the best formulation for growth performance, waste reduction efficiency, and nutritional composition of BSF larvae when compared with standard diets. Abstract Black soldier fly (BSF, Hermetia illucens) larvae are considered as insects with a high potential to convert organic waste into high-value products. The objective of this study was to investigate the growth performance, waste reduction efficiency, and nutritional composition of BSF reared on different ratios of coconut endosperm (C) and soybean curd residue (S), with or without supplementation, compared to standard diets (Gainesville: G and starter chicken diet: CK). Seven-day-old larvae were randomly divided into eight experimental groups (G, CK, and three different ratios of C and S with or without supplementation) with three replicates with an equal weight of larvae. The supplement contained calcium, phosphorus, amino acids, and a mineral–vitamin premix which was formulated to correlate with CK. Each replicate was terminated, measured, and evaluated when 40% of larvae had reached prepupal stage. The highest larval weight gain was presented in BSF fed CK, followed by those fed coconut endosperm and soybean curd residue at a ratio of 20:80 (C20S80), and coconut endosperm and soybean curd residue at a ratio of 50:50 (C50S50) without supplementation (numbers after C and S represent their percentage in the formulation; p < 0.001). Harvesting was delayed in the BSF fed C80S20 with and without supplementation (p < 0.001). The number of total larvae and prepupae was not significantly different between groups (p > 0.05). The greatest waste reduction efficiency was observed in the G, C50S50, and C20S80 groups without supplementation (p < 0.001). All groups with supplementation had a higher proportion of ash in both larvae and prepupae compared to non-supplemented groups (p < 0.001), but lower growth performance. The highest percentage of crude protein in larvae was presented in the Gainesville and C20S80 groups followed by the CK and C50S50 groups (p < 0.001). Equal proportions of C and S without supplementation are suggested as a rearing substrate. However, growth performance was lower than for CK; therefore, further studies could investigate cost-efficient techniques to promote this parameter.
Collapse
|
46
|
Singh A, Srikanth BH, Kumari K. Determining the Black Soldier fly larvae performance for plant-based food waste reduction and the effect on Biomass yield. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 130:147-154. [PMID: 34090238 DOI: 10.1016/j.wasman.2021.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/28/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Management of Municipal solid waste in low-income countries with high population densities such as India has always been a strenuous task. With perpetual advancements, there are many available technologies dealing with waste management such as incineration, pyrolysis and landfill operations. But such technologies are often accompanied with some limitations (operational and maintenance problems) and have negative environmental impacts. In this regard, continuous efforts are currently spent to develop the sustainable technologies for coping with the problems of waste management. Confronted with such problems, BSF larval composting has emerged as a green approach for waste management which outshines the various current technologies. However, it is not widely explored and therefore in the present study, BSF larval treatment efficiency has been tested against different types of food waste treatments viz., mix food waste (T1), restaurant waste (T2), fruit waste (T3), and vegetable waste (T4). We have also evaluated the Biomass Conversion Ratio (BCR) of BSF larvae. The waste reduction efficiency was found to be 72% for T1 followed by T3 and T2 whereas the efficiency was least for T4 corresponding to lower BCR comparatively. BCR obtained for T1 treatment was almost 25% which was exceptionally high in comparison to other published studies. The highest waste reduction efficiency and the BCR values for T1 may be attributed to appropriately balanced food nutrition and C/N ratio Therefore, it may be concluded that substrate type and its nutritional value strongly determines the growth and development of larva influencing the waste ingestion rate.
Collapse
Affiliation(s)
- Anshika Singh
- CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata Zonal Centre, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - B H Srikanth
- Art of Waste Management, Kalpavraksha, Jannapura, Bhadravati 577307, India
| | - Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata Zonal Centre, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
47
|
Use of Black Soldier Fly Larvae for Food Waste Treatment and Energy Production in Asian Countries: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9010161] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Food waste accounts for a substantial portion of the organic waste generated at an increasing rate worldwide. Organic waste, including food waste, is largely subjected to landfill disposal, incineration, and anaerobic digestion; however, more sustainable methods are needed for treating it. Treatment of organic waste using black soldier fly (Hermetia illucens) larvae is an environmentally safe and cost-efficient method that has been attracting increasing attention worldwide. Black soldier fly decomposes various types of organic waste and converts them into high-value biomasses such as oils and proteins. This review introduces the trends in research related to the treatment of organic waste by black soldier fly (Hermetia illucens) larvae (BSFL) and their bioconversion efficiencies in Asian countries. Perspectives on the growth of BSFL during waste treatment operation and optimal rearing conditions are provided. The trends in studies related to the application of BSFL as biofuel and animal feed are also discussed. Such use of BSFL would be beneficial in Asia, especially in countries where the technology for processing organic waste is not readily available. This review may provide further directions of investigations including culture techniques for industrial scale applications of BSFL in food waste treatment and resource production in Asian countries.
Collapse
|
48
|
Production and Optimization of Hermetia illucens (L.) Larvae Reared on Food Waste and Utilized as Feed Ingredient. SUSTAINABILITY 2020. [DOI: 10.3390/su12239864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The feed sector requires new sustainable sources of protein, and at the same time better waste management practices are required to decrease and upcycle post-consumers’ food waste (catering and organic household waste), which is currently used for energy production or discharged as waste. The production of Hermetia illucens larvae (L.) (BSFL) was conducted in 15 batches at pilot scale. Furthermore, a feeding strategy experiment was conducted to optimize feedings and decrease handling, followed by a digestibility study for assessing the applicability of BSFL as a feed ingredient. About 190 kg of food waste was used to produce 79 kg of BSFL. The bioconversion of food waste into BSFL was found to be highly efficient, with feed conversion rate (FCR) values ranging between 1.7 and 3.6, when assessed on dry matter. The feeding experiment showed similar BSFL and insect frass production as well as similar FCR, revealing that a decrease in handling can be obtained if two feeding episodes are used. The digestibility of protein and fat was high at 86.2 and 90.4% and revealed that BSFL meal can be successfully used as a protein and fat source in feed for carnivore animals outside the food chain (e.g., pet food).
Collapse
|
49
|
Surendra KC, Tomberlin JK, van Huis A, Cammack JA, Heckmann LHL, Khanal SK. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 117:58-80. [PMID: 32805602 DOI: 10.1016/j.wasman.2020.07.050] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Population growth and unprecedented economic growth and urbanization, especially in low- and middle-income countries, coupled with extreme weather patterns, the high-environmental footprint of agricultural practices, and disposal-oriented waste management practices, require significant changes in the ways we produce food, feed and fuel, and manage enormous amounts of organic wastes. Farming insects such as the black soldier fly (BSF) (Hermetia illucens) on diverse organic wastes provides an opportunity for producing nutrient-rich animal feed, fuel, organic fertilizer, and biobased products with concurrent valorization of wastes. Inclusion of BSF larvae/pupae in the diets of poultry, fish, and swine has shown promise as a potential substitute of conventional feed ingredients such as soybean meal and fish meal. Moreover, the bioactive compounds such as antimicrobial peptides, medium chain fatty acids, and chitin and its derivatives present in BSF larvae/pupae, could also add values to the animal diets. However, to realize the full potential of BSF-based biorefining, more research and development efforts are necessary for scaling up the production and processing of BSF biomass using more mechanized and automated systems. More studies are also needed to ensure the safety of the BSF biomass grown on various organic wastes for animal feed (also food) and legalizing the feed application of BSF biomass to wider categories of animals. This critical review presents the current status of the BSF technology, identifies the research gaps, highlights the challenges towards industrial scale production, and provides future perspectives.
Collapse
Affiliation(s)
- K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jonathan A Cammack
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|