1
|
Chen H, Li Y, Ying Z, Xia Y, You J. Boosting o-xylene removal and power generation in an airlift microbial fuel cell system. RSC Adv 2023; 13:20314-20320. [PMID: 37425631 PMCID: PMC10323715 DOI: 10.1039/d3ra02174b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023] Open
Abstract
Microbial fuel cells (MFCs) are widely acknowledged to be a promising eco-friendly abatement technology of pollutants, and are capable of generating electricity. However, the poor mass transfer and reaction rate in MFCs significantly decrease their treatment capacity for contaminants, especially hydrophobic substances. The present work developed a novel MFC integrated with an airlift (ALR) reactor using a polypyrrole modified anode to promote the bioaccessibility of gaseous o-xylene and attachment of microorganisms. The results indicated that the established ALR-MFC system showed excellent elimination capability, with removal efficiency exceeding 84% even at high o-xylene concentration (1600 mg m-3). The maximum output voltage of 0.549 V and power density of 13.16 mW m-2 obtained by the Monod-type model were approximately twice and sixfold higher than that of a conventional MFC, respectively. According to the microbial community analysis, the superior performances of the ALR-MFC in terms of o-xylene removal and power generation were mainly ascribed to the enrichment of degrader (i.e. Shinella) and electrochemical active bacteria (i.e. Proteiniphilum). Moreover, the electricity generation of the ALR-MFC did not decrease at a high O2 concentration, as O2 was conducive to o-xylene degradation and electron release. The supplication of an external carbon source such as sodium acetate (NaAc) was conducive to increasing output voltage and coulombic efficiency. The electrochemical analysis revealed that released electrons can be transmitted with the action of NADH dehydrogenase to OmcZ, OmcS, and OmcA outer membrane proteins via a direct or indirect pathway, and ended up transferring to the anode directly.
Collapse
Affiliation(s)
- Han Chen
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power Hangzhou 310018 China
| | - Yuanming Li
- Zhejiang Zhoushan Tourism and Health College Zhoushan 316111 China
| | - Zanyun Ying
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science & Technology, Ningbo University Ningbo 315212 China
| | - Yinfeng Xia
- Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power Hangzhou 310018 China
| | - Juping You
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University Zhoushan 316022 China
| |
Collapse
|
2
|
Picão BW, Gonçalves DO, Ribeiro RMMGP, Esperança MN, Peixoto G, Cerri MO. Oxygen transfer and gas holdup in airlift bioreactors assembled with helical flow promoters. Bioprocess Biosyst Eng 2023; 46:681-692. [PMID: 36806976 DOI: 10.1007/s00449-023-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Bioreactors can perform biochemical conversions mediated by biocatalysts, such as enzymes, animal cells, plants, and microorganisms. Among several existing models, airlift bioreactors are devices with the low shear environment and good mass transfer with low energy consumption, employed in several biochemical processes. The fluid flow is enabled through air injection by the sparger located at the bioreactor base. Despite its simple geometry compared with the conventional bioreactors, airlift performance can be optimized via geometrical modifications. Therefore, the objective of this work was to evaluate the effects of the addition of helical flow promoters, positioned in the riser and/or downcomer regions of an airlift of concentric tubes measuring the volumetric oxygen coefficient (kLa) and gas holdup. The results obtained by varying the gas flow rate from 1.0 to 4.0 vvm allowed the system evaluation of oxygen transfer and gas holdup. The inclusion of helical flow promoters increased the kLa, reaching up to 23% in oxygen transfer compared to tests without helicoids and up to 14% increase in the gas holdup. The inclusion of helical flow promotors was beneficial for all gas flow rates. Thus, including these flow promoters is an effective strategy to increase the oxygen transfer rate for bioprocess optimization.
Collapse
Affiliation(s)
- Bruno W Picão
- Department of Bioprocesses Engineering and Biotechnology, Faculty of Pharmaceutical Sciences, University Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, CEP 14801-902, Brazil
| | - Daniele O Gonçalves
- Department of Bioprocesses Engineering and Biotechnology, Faculty of Pharmaceutical Sciences, University Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, CEP 14801-902, Brazil
| | - Renata M M G P Ribeiro
- School of Chemical Engineering, Department of Materials and Engineering Bioprocesses, State University of Campinas, Campinas, SP, Brazil
| | - Mateus N Esperança
- Federal Institute of Education, Science and Technology of São Paulo, Campus Capivari, Capivari, SP, 13360-000, Brazil
| | - Guilherme Peixoto
- Department of Bioprocesses Engineering and Biotechnology, Faculty of Pharmaceutical Sciences, University Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, CEP 14801-902, Brazil
| | - Marcel O Cerri
- Department of Bioprocesses Engineering and Biotechnology, Faculty of Pharmaceutical Sciences, University Estadual Paulista "Júlio de Mesquita Filho", Araraquara, SP, CEP 14801-902, Brazil.
| |
Collapse
|
3
|
Study on Gaseous Chlorobenzene Treatment by a Bio-Trickling Filter: Degradation Mechanism and Microbial Community. Processes (Basel) 2022. [DOI: 10.3390/pr10081483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Large-flow waste gas generated from the pharmaceutical and chemical industry usually contains low concentrations of VOCs (volatile organic compounds), and it is also the key factor that presents challenges in terms of disposal. To date, due to the limitations of mass transfer rate and microbial degradation ability, the degradation performance of VOCs using the biological method has not been ideal. Therefore, in this study, the sludge from a chlorobenzene-containing wastewater treatment plant was inoculated into our experimental bio-trickling filter (BTF) to explore the feasibility of domestication and degradation of gaseous chlorobenzene by highly active microorganisms. The kinetics of its mass transfer reaction and microbial community dynamics were also discussed. Moreover, the main process parameters of BTF for chlorobenzene degradation were optimized. The results showed that the degradation effect of chlorobenzene reached more than 85% at an inlet concentration of chlorobenzene 700 mg·m−3, oxygen concentration of 10%, and an empty bed retention time (EBRT) of 80 s. The mass transfer kinetic analysis indicated that the process of chlorobenzene degradation in the BTF occurred between the zero-stage reaction and the first-stage reaction. This BTF contributed significantly to the biodegradability of chlorobenzene, overcoming the limitation of gas-to-liquid/solid mass transfer of chlorobenzene. The analysis of the species diversity showed that Thermomonas, Petrimona, Comana, and Ottowia were typical organic-matter-degrading bacteria that degraded chlorobenzene efficiently with xylene present.
Collapse
|