1
|
Lee E, Min KJ, Lee AH, Park KY. Effect of cations on aerobic granulation for sidestream treatment. Heliyon 2024; 10:e37216. [PMID: 39286153 PMCID: PMC11403508 DOI: 10.1016/j.heliyon.2024.e37216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Aerobic granular sludge (AGS) represents an aggregate of sludge formed through the self-immobilization of microorganisms under aerobic conditions. It is currently under scrutiny for its potential as a technology to reduce carbon emissions and promote sustainability. The practicality of AGS stems from its ability to encourage granule formation and enhance structural stability. In this study, a total of five cations (K+, Ca2+, Mg2+, Al3+, Fe3+) were introduced to facilitate stable structuring and the formation of granules for treating high-strength wastewater, such as side-stream treatment. As a result of the experiment, the loosely bound extracellular polymeric substances (LB-EPS) content in the cation-enhanced sludge witnessed a significant increase, leading to elevated total EPS content under all experimental conditions. Furthermore, the protein (PN)/polysaccharide (PS) ratio, a pivotal component of EPS influencing AGS's hydrophobicity and structural stability, exhibited a collective increase, with Mg2+ reaching the highest value of 1.7. The relationship between relative hydrophobicity and the PN/PS ratio was found to strongly impact sludge adhesion, with noteworthy results observed particularly for Mg2+, Al3+, and Fe3+. The viability of attached cells reached 96.8 %, the highest recorded in the case of Mg2+. In the context of treating high-strength wastewater, Mg2+ emerged as the optimal cation for accelerating AGS formation and enhancing structural stability.
Collapse
Affiliation(s)
- Eunyoung Lee
- Department of Civil, Environmental and Plant Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Kyung Jin Min
- Department of Tech Center for Research Facilities, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Ah Hyun Lee
- Department of Civil, Environmental and Plant Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Ki Young Park
- Department of Civil, Environmental and Plant Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| |
Collapse
|
2
|
Qi WK, Tian RF, Li B, Zhang SJ, Peng YZ, Wang C. Novel separate aeration self-circulating technology for continuous aerobic granular sludge process: Performance evaluation, hydrodynamic simulation and control strategy. WATER RESEARCH 2024; 261:122025. [PMID: 39002418 DOI: 10.1016/j.watres.2024.122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Abstract
The continuous aerobic granular sludge (AGS) process is promising for upgrading existing wastewater treatment facilities. However, this approach is still challenging because of its complicated structure and operation. To address this issue, a novel separate aeration self-circulating technology (abbreviated as Zier) was proposed, which is promising for cultivating AGS by its outstanding upflow velocity and circulation multiplier (more than 30 m/h and 200, respectively). This study elaborated on the Zier reactor's feasibility, optimization, and control strategy through computational fluid dynamics simulations, theoretical calculations, and experiments. An appropriate flow regime for efficient removal of pollutant and granulation of sludge was attained at a superficial gas velocity of 1.3 cm/s. Moreover, optimizing the aeration column diameter to half of the reaction column and increasing the height/diameter ratio to 20 dramatically boosted the nitrogen removal capacity over 1.6 kg N/m3/d. Utilizing a smaller circulation pipe diameter ensured granulation under a consistent flow regime. By judiciously regulating, multiple CSTRs and PFRs seamlessly integrated within the Zier reactor across a broad spectrum of particle sludge. The validity of these findings was further substantiated through experimental and theoretical validations. Drawing from these findings, a multi-scenario control strategy was proposed as Zier's map. With all the superiorities shown by the Zier reactor, this study could offer new insights into an efficient continuous AGS process.
Collapse
Affiliation(s)
- Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Run-Feng Tian
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Bo Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shu-Jun Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Yong-Zhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Cong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; Beijing Drainage Group Co., Ltd., Beijing 100044, China.
| |
Collapse
|
3
|
Lv YT, Wang Y, Dong J, Miao R, Wang X, Chen X, Wang L. Mechanisms of denitrifying granular sludge disintegration and calcium ion-enhanced re-granulation in acidic wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121794. [PMID: 38986371 DOI: 10.1016/j.jenvman.2024.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/01/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Granular sludge is an alternative technology for the direct treatment of acidic nitrate-containing wastewater. Rapid remediation of disintegrated granules is essential to achieve efficient nitrogen removal. In this study, denitrifying granules were inactivated and disintegrated when the influent nitrate-nitrogen concentration was elevated from 240 to 360 mg L-1 in acidic wastewater (pH = 4.1) in a sequencing batch reactor. Tightly bound extracellular polymeric substances (TB-EPS) decreased by 60%, and extracellular protein (PN) was the main component of the reduced EPS. The three-dimensional excitation emission matrices (3D-EEM) results confirmed that the PNs that decreased were mainly tryptophan-like, tyrosine-like, and aromatic. This study further confirmed that the decrease in PN was mainly from the destruction of C=O (amide I) and N-H functional groups. Overloading of nitrogen-inhibited denitrifying activity and the destruction and dissolution of TB-EPS by acidic pH were responsible for granule disintegration, with PNs playing a major role in maintaining granule stability. Based on this, new granules with an average particle size of 454.4 μm were formed after calcium chloride addition; EPS nearly doubled during granule formation with PN as the dominant component, accounting for 64.7-78.4% of the EPS. Atomic force microscopy (AFM) revealed that PN-PN adhesion increased by 1.6-4.9 times in the presence of calcium ions, accelerating the re-granulation of disintegrated particles. This study provides new insights into the disintegration and remediation of granular sludge under acidic conditions.
Collapse
Affiliation(s)
- Yong-Tao Lv
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Yixin Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Jian Dong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Rui Miao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Xudong Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Xiaolin Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China.
| |
Collapse
|
4
|
Paritosh K, Kesharwani N. Biochar mediated high-rate anaerobic bioreactors: A critical review on high-strength wastewater treatment and management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120348. [PMID: 38457889 DOI: 10.1016/j.jenvman.2024.120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 03/10/2024]
Abstract
Treatment of high-strength wastewater is critical for the aquatic environment and receiving water bodies around the globe. Untreated or partially treated high-strength wastewater may cause severe damage to the existing water bodies. Various high-rate anaerobic bioreactors have been developed in the last decades for treating high-strength wastewater. High-rate anaerobic bioreactors are effective in treating industrial wastewater and provide energy in the form of methane as well. However, the physical or chemical properties of high-strength industrial wastewater, sometimes, disrupt the functioning of a high-rate anaerobic bioreactor. For example, the disintegration of granular sludge in up flow anaerobic sludge blanket reactor or membrane blocking in an anaerobic membrane bioreactor are the results of a high-strength wastewater treatment which hamper the proper functioning and may harm the wastewater treatment plant economically. Biochar, if added to these bioreactors, may help to alleviate the ill-functioning of high-rate anaerobic bioreactors. The primary mechanisms by biochar work in these bioreactors are direct interspecies electron transfer, microbial immobilization, or gene level alternations in microbial structure. The present article explores and reviews the recent application of biochar in a high-rate anaerobic bioreactor treating high-strength industrial wastewater.
Collapse
Affiliation(s)
- Kunwar Paritosh
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland.
| | - Nupur Kesharwani
- Department of Civil Engineering, Government Engineering College, Bilaspur, Chhattisgarh, India
| |
Collapse
|
5
|
Yan Y, Li X, Ren S, Zhang Q, Wu D, Zhou J, Peng Y. Efficient nitrogen removal and robustness enhancement of a two-stage partial nitrification-anammox (PN/A) process with low sludge concentration for mature landfill leachate. BIORESOURCE TECHNOLOGY 2023; 387:129573. [PMID: 37506937 DOI: 10.1016/j.biortech.2023.129573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The biological treatment system for high-strength wastewater, particularly landfill leachate, typically requires high sludge concentration to maintain nitrogen removal performance. However, it frequently causes an excessive accumulation of toxins in microbial metabolism, resulting in unstable performance during long-term operation. An efficient two-stage partial nitrification/anammox (PN/A) mature landfill leachate process with low sludge concentration was constructed by settling time reduction and Ca2+ addition. The ammonia removal rate reached 46.7 mg N/(L·h) in PN-SBR. Nitrosomonas (2.0%) was the sole genus responsible for partial nitrification. The influent NO2--N/NH4+-N of A-SBR was kept at 1.39, leading to a dynamic equilibrium of anammox and denitrification. Ca. Brocadia recovered fastest (0.32% → 1.8%) among the detected AnAOB genera. The process achieved NRE of 95.0% with effluent TIN of 37.6 mg/L (<40 mg/L). This research offered recommendations for the favorable operation of the two-stage PN/A mature landfill leachate treatment system with low sludge concentration.
Collapse
Affiliation(s)
- Ying Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Di Wu
- Qingdao SPRING Water Treatment Co. Ltd., Qingdao 266510, China
| | - Jiazhong Zhou
- Qingdao SPRING Water Treatment Co. Ltd., Qingdao 266510, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Facile biosynthesis of CaO nanoparticles using extract of Tulbaghia violacea and evaluation of their antibacterial and cytotoxicity activity. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
7
|
Lin D, Li X, Hou M, Chen Y, Zeng J, Yi X. Aerobic granular sludge cultivated from Fe-loaded activated carbon as carrier working low-strength wastewater conditions by bioreactor. CHEMOSPHERE 2022; 306:135532. [PMID: 35798157 DOI: 10.1016/j.chemosphere.2022.135532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/17/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
This study proposes a new method to promote the granulation process while accelerating the degradation efficiency of nutrients. The new strategy could involve preparing Fe-loaded activated carbon (FAC) before start-up of granular cultivation and then cultivating the process of aerobic granular sludge (AGS) with such materials. In addition, this experiment could further comprehend how the preparation and characteristics of FAC affect the formation and properties of AGS. The conclusions showed that compared with the control, FAC enhanced the sedimentation performance and significant removal efficiency. Meanwhile, the values of protein (PN) and polysaccharide (PS) also increased significantly in the addition of FAC, indicating the production of substances were induced by FAC. Molecular biology methods indicated that the rapid production of granulation and removal of nutrients were considered as the abundance of various microbes and denitrifying bacteria at the addition of FAC. This research showed that the presence of FAC is a useful strategy for the initiation of sludge particle formation to promote the treatment of wastewater, containing COD and NH4+ at about 150-100 and 30 mg L-1.
Collapse
Affiliation(s)
- Dexin Lin
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Xinzhi Li
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Mingxiu Hou
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Yuliang Chen
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Jie Zeng
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China
| | - Xuesong Yi
- College of Ecology and Environment, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
8
|
Jagaba AH, Kutty SRM, Isa MH, Ghaleb AAS, Lawal IM, Usman AK, Birniwa AH, Noor A, Abubakar S, Umaru I, Saeed AAH, Afolabi HK, Soja UB. Toxic Effects of Xenobiotic Compounds on the Microbial Community of Activated Sludge. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ahmad Hussaini Jagaba
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Shamsul Rahman Mohamed Kutty
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Universiti Teknologi PETRONAS Centre of Urban Resource Sustainability Institute of Self-Sustainable Building 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Mohamed Hasnain Isa
- Universiti Teknologi Brunei Civil Engineering Programme Faculty of Engineering Tungku Highway BE1410 Gadong Brunei Darussalam
| | - Aiban Abdulhakim Saeed Ghaleb
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Ibrahim Mohammed Lawal
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
- University of Strathclyde Department of Civil and Environmental Engineering Glasgow United Kingdom
| | | | | | - Azmatullah Noor
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Sule Abubakar
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Ibrahim Umaru
- Abubakar Tafawa Balewa University Department of Civil Engineering Bauchi Nigeria
| | - Anwar Ameen Hezam Saeed
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Haruna Kolawole Afolabi
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| | - Usman Bala Soja
- Federal University Dutsin-Ma Department of Civil Engineering P.M.B. 5001 Dutsin-Ma Katsina State Nigeria
| |
Collapse
|
9
|
Guo Y, Zhang B, Feng S, Wang D, Li J, Shi W. Unveiling significance of Ca 2+ ion for start-up of aerobic granular sludge reactor by distinguishing its effects on physicochemical property and bioactivity of sludge. ENVIRONMENTAL RESEARCH 2022; 212:113299. [PMID: 35430279 DOI: 10.1016/j.envres.2022.113299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Almost all of the aerobic granular sludge (AGS) reactors were fed on certain amounts of Ca2+ ion, but whether and why it was necessary for reactor start-up remain unknown. Herein, this study conducted a set of comparative experiments in three AGS reactors, which were operated in parallel with Ca2+ addition in R3, hydroxyapatite (HAP) addition in R1, and without any forms of Ca addition in R2. Results showed that R3 not only achieved the complete granulation of sludge, but exhibited superior performance of COD and nutrient removal. In contrast, R1 had a slightly quicker granulation rate than R3 (R1: 0.07 day-1; R3: 0.06 day-1), but the formed granules could not efficiently degrade pollutants. In R2, both sludge granulation and pollutants removal did not proceed normally. Further investigations found that the Ca2+ ion acted in three ways: (1) it increased inorganic composition of sludge to promote granulation; (2) the transformed HAP strengthened stability of granular structure; (3) it ensured bioactivity of granules by driving enrichment of functional microbes and synthesis of metabolism enzymes. Overall, this study systemically proved significance of Ca2+ ion for the start-up of AGS reactors and its influencing mechanisms on different properties of granules.
Collapse
Affiliation(s)
- Yuan Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Siqi Feng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiake Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
10
|
Hamiruddin NA, Awang NA, Mohd Shahpudin SN, Zaidi NS, Said MAM, Chaplot B, Azamathulla HM. Effects of wastewater type on stability and operating conditions control strategy in relation to the formation of aerobic granular sludge - a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2113-2130. [PMID: 34810301 DOI: 10.2166/wst.2021.415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, research trends on aerobic granular sludge (AGS) have integrated the operating conditions of extracellular polymeric substances (EPS) towards the stability of AGS systems in various types of wastewater with different physical and biochemical characteristics. More attention is given to the stability of the AGS system for real site applications. Although recent studies have reported comprehensively the mechanism of AGS formation and stability in relation to other intermolecular interactions such as microbial distribution, shock loading and toxicity, standard operating condition control strategies for different types of wastewater have not yet been discussed. Thus, the dimensional multi-layer structural model of AGS is discussed comprehensively in the first part of this review paper, focusing on diameter size, thickness variability of each layer and diffusion factor. This can assist in facilitating the interrelation between disposition and stability of AGS structure to correspond to the changes in wastewater types, which is the main objective and novelty of this review.
Collapse
Affiliation(s)
- N A Hamiruddin
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - N A Awang
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - S N Mohd Shahpudin
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | - N S Zaidi
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
| | - M A M Said
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia E-mail:
| | - B Chaplot
- Department of Geography, M.J.K College, Bettiah, a constituent unit of B.R.A., Bihar University, Bettiah, Muzaffarpur, India
| | - H M Azamathulla
- Faculty of Engineering, The University of the West Indies, St. Augustine, Trinidad
| |
Collapse
|
11
|
Barros ARM, de Carvalho CDA, Firmino PIM, Dos Santos AB. Effect of calcium addition to aerobic granular sludge systems under high (conventional SBR) and low (simultaneous fill/draw SBR) selection pressure. ENVIRONMENTAL RESEARCH 2021; 194:110639. [PMID: 33352185 DOI: 10.1016/j.envres.2020.110639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
This paper investigated the effect of calcium addition on the formation and properties of aerobic granules under high (conventional SBR) and low (simultaneous fill/draw SBR) selection pressure. Additionally, the simultaneous removal of carbon, nitrogen, and phosphorus, and the operational stability were assessed. The conventional SBRs showed earlier granule development (20 days) than the simultaneous fill/draw SBRs. The effect of calcium on granulation was more accentuated in conventional SBRs, forming larger granules in a shorter interval of time due to the higher EPS production. Additionally, higher amounts of calcium were found in the EPS matrix, mainly during the formation of granules. The operation regime and the addition of calcium did not affect the removal of carbon, nitrogen, and phosphorus. However, they both influenced the granulation time, settleability characteristics, size, and granule composition.
Collapse
Affiliation(s)
| | - Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
12
|
Luiz de Sousa Rollemberg S, Queiroz de Oliveira L, Nascimento de Barros A, Igor Milen Firmino P, Bezerra Dos Santos A. Pilot-scale aerobic granular sludge in the treatment of municipal wastewater: Optimizations in the start-up, methodology of sludge discharge, and evaluation of resource recovery. BIORESOURCE TECHNOLOGY 2020; 311:123467. [PMID: 32388453 DOI: 10.1016/j.biortech.2020.123467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
This work evaluated the formation, maintenance, performance, and microbiology of a pilot-scale aerobic granular sludge reactor treating low-strength municipal wastewater under tropical climate conditions. Additionally, different resource recovery possibilities (phosphorous, tryptophan, and alginate-like exopolysaccharides) were investigated from the produced sludge. Granulation occurred after 35 days without external carbon source supplementation (CODinf ≈ 461 mg/L; COD/DBO5 ≈ 3.2). Some protocols were implemented: (i) fat separation to decrease granule flotation; (ii) high exchange rates (60%) during rainy periods to increase the organic load; (iii) selective sludge discharge methodology. After granules formation, optimizations were done to improve reactor performance (COD, BOD, NH4+, and PO43- removals close to 90%), and energy demand reduced from 0.43 (start-up) to 0.25 kWh/m3 (after optimizations). The produced sludge had a high concentration of phosphorus (0.020 g P/g VSS), tryptophan (0.048 g tryptophan/g VSS), and alginate-like exopolysaccharides (0.219 g ALE/g VSS), indicating a good resource recovery possibility.
Collapse
Affiliation(s)
| | - Lorayne Queiroz de Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Amanda Nascimento de Barros
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
13
|
Iannacone F, Di Capua F, Granata F, Gargano R, Esposito G. Simultaneous nitrification, denitrification and phosphorus removal in a continuous-flow moving bed biofilm reactor alternating microaerobic and aerobic conditions. BIORESOURCE TECHNOLOGY 2020; 310:123453. [PMID: 32371322 DOI: 10.1016/j.biortech.2020.123453] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
A continuous-flow moving bed biofilm reactor (IAMBBR) alternating microaerobic and aerobic conditions was used to remove carbon, nitrogen and phosphorus through simultaneous nitrification and denitrification coupled to phosphorus removal (SNDPR). The IAMBBR was operated under different dissolved oxygen (DO) ranges (0.2-2, 0.2-3 and 0.2-4 mg L-1) and feed C/N ratios (2.8, 3.6 and 4.2) at HRT of 1 day. At a DO range of 0.2-3 mg L-1 and feed C/N ratio of 3.6, the IAMBBR achieved simultaneous removal of dissolved organic carbon (DOC), total inorganic nitrogen (TIN) and P-PO43- with average efficiencies of 100%, 62% and 75%, respectively. Illumina sequencing revealed the coexistence of nitrifiers and P-accumulating denitrifiers (e.g. Hydrogenophaga) in the IAMBBR biofilm. Batch activity tests showed that phosphorus uptake did not occur under stable anaerobic or anoxic conditions, nor under aerobic conditions in absence of nitrate.
Collapse
Affiliation(s)
- Francesca Iannacone
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Gaetano di Biasio 43, 03043 Cassino, Italy.
| | - Francesco Di Capua
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Francesco Granata
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Gaetano di Biasio 43, 03043 Cassino, Italy
| | - Rudy Gargano
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Gaetano di Biasio 43, 03043 Cassino, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
14
|
Impact of additive application on the establishment of fast and stable aerobic granulation. Appl Microbiol Biotechnol 2020; 104:5697-5709. [PMID: 32415318 DOI: 10.1007/s00253-020-10657-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Aerobic granular sludge (AGS) is a microbial biofilm self-aggregation, which is effective for nutrient and pollutant removal, through the development of dense microbial layers bound together with extracellular polymeric substances (EPSs). However, long start-up times and granule disintegration are still challenges ahead. An array of external additives, including ion chelating agents, sludge-based enhancers, and magnetic influence have been tested to overcome these barriers. The application of such additives may promote enhanced EPS production, neutralization of charges on the bacterial surface, acts as a core-induced agent, or as a bridge to connect EPSs and cell surfaces. Although additives may improve the granule formation without reducing treatment efficiencies, there are still environmental concerns due to the fate and toxicity of discharged excess sludge. This mini-review identifies an array of external additives and their mechanisms to improve granulation properties, and proposes discussion about the technical and economic viability of these additives. KEY POINTS: • Additives reduce granulation time and repair granule disintegration. • Biopolymer-based additives fulfill technical and environmental requirements. • Sludge-based additives are cheap and in line with the resource recovery concept. • The need for environmental-friendly additives for aerobic granular sludge process. • External additives affect granular biomass size distribution.
Collapse
|