1
|
Jacoby DMP, Piper AT. What acoustic telemetry can and cannot tell us about fish biology. JOURNAL OF FISH BIOLOGY 2023. [PMID: 37837176 DOI: 10.1111/jfb.15588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
Acoustic telemetry (AT) has become ubiquitous in aquatic monitoring and fish biology, conservation, and management. Since the early use of active ultrasonic tracking that required researchers to follow at a distance their species of interest, the field has diversified considerably, with exciting advances in both hydrophone and transmitter technology. Once a highly specialized methodology, however, AT is fast becoming a generalist tool for those wishing to study or conserve fishes, leading to diversifying application by non-specialists. With this transition in mind, we evaluate exactly what AT has become useful for, discussing how the technological and analytical advances around AT can address important questions within fish biology. In doing so, we highlight the key ecological and applied research areas where AT continues to reveal crucial new insights and, in particular, when combined with complimentary research approaches. We provide a comprehensive breakdown of the state of the art for applications of AT, discussing the ongoing challenges, where its strengths lie, and how future developments may revolutionize fisheries management, behavioral ecology and species protection. Through selected papers we illustrate specific applications across the broad spectrum of fish biology. By bringing together the recent and future developments in this field under categories designed to broadly capture many aspects of fish biology, we hope to offer a useful guide for the non-specialist practitioner as they attempt to navigate the dizzying array of considerations and ongoing developments within this diverse toolkit.
Collapse
Affiliation(s)
- David M P Jacoby
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Institute of Zoology, Zoological Society of London, London, UK
| | - Adam T Piper
- Institute of Zoology, Zoological Society of London, London, UK
| |
Collapse
|
2
|
Quaranta E, Bejarano MD, Comoglio C, Fuentes-Pérez JF, Pérez-Díaz JI, Sanz-Ronda FJ, Schletterer M, Szabo-Meszaros M, Tuhtan JA. Digitalization and real-time control to mitigate environmental impacts along rivers: Focus on artificial barriers, hydropower systems and European priorities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162489. [PMID: 36870504 DOI: 10.1016/j.scitotenv.2023.162489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Hydropower globally represents the main source of renewable energy, and provides several benefits, e.g., water storage and flexibility; on the other hand, it may cause significant impacts on the environment. Hence sustainable hydropower needs to achieve a balance between electricity generation, impacts on ecosystems and benefits on society, supporting the achievement of the Green Deal targets. The implementation of digital, information, communication and control (DICC) technologies is emerging as an effective strategy to support such a trade-off, especially in the European Union (EU), fostering both the green and the digital transitions. In this study, we show how DICC can foster the environmental integration of hydropower into the Earth spheres, with focus on the hydrosphere (e.g., on water quality and quantity, hydropeaking mitigation, environmental flow control), biosphere (e.g., improvement of riparian vegetation, fish habitat and migration), atmosphere (reduction of methane emissions and evaporation from reservoirs), lithosphere (better sediment management, reduction of seepages), and on the anthroposphere (e.g., reduction of pollution associated to combined sewer overflows, chemicals, plastics and microplastics). With reference to the abovementioned Earth spheres, the main DICC applications, case studies, challenges, Technology Readiness Level (TRL), benefits and limitations, and transversal benefits for energy generation and predictive Operation and Maintenance (O&M), are discussed. The priorities for the European Union are highlighted. Although the paper focuses primarly on hydropower, analogous considerations are valid for any artificial barrier, water reservoir and civil structure which interferes with freshwater systems.
Collapse
Affiliation(s)
| | | | | | - Juan Francisco Fuentes-Pérez
- GEA Ecohidráulica, Department of Agriculture and Forestry Engineering, ETSIIAA, University of Valladolid, Palencia, Spain.
| | - Juan Ignacio Pérez-Díaz
- Department of Hydraulic, Energy and Environmental Engineering, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Francisco Javier Sanz-Ronda
- GEA Ecohidráulica, Department of Agriculture and Forestry Engineering, ETSIIAA, University of Valladolid, Palencia, Spain.
| | - Martin Schletterer
- Department of Hydropower Engineering, TIWAG-Tiroler Wasserkraft AG, Innsbruck, Austria; Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria.
| | | | - Jeffrey A Tuhtan
- Department of Computer Systems, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
3
|
Cooke SJ, Bergman JN, Twardek WM, Piczak ML, Casselberry GA, Lutek K, Dahlmo LS, Birnie-Gauvin K, Griffin LP, Brownscombe JW, Raby GD, Standen EM, Horodysky AZ, Johnsen S, Danylchuk AJ, Furey NB, Gallagher AJ, Lédée EJI, Midwood JD, Gutowsky LFG, Jacoby DMP, Matley JK, Lennox RJ. The movement ecology of fishes. JOURNAL OF FISH BIOLOGY 2022; 101:756-779. [PMID: 35788929 DOI: 10.1111/jfb.15153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Jordanna N Bergman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - William M Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Morgan L Piczak
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Grace A Casselberry
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keegan Lutek
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lotte S Dahlmo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Kim Birnie-Gauvin
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Lucas P Griffin
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Graham D Raby
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Emily M Standen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, Virginia, USA
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, North Caroline, USA
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nathan B Furey
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Elodie J I Lédée
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jon D Midwood
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Lee F G Gutowsky
- Environmental & Life Sciences Program, Trent University, Peterborough, Ontario, Canada
| | - David M P Jacoby
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jordan K Matley
- Program in Aquatic Resources, St Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
4
|
Bourgeaux J, Teichert N, Gillier JM, Danet V, Feunteun E, Acou A, Charrier F, Mazel V, Carpentier A, Trancart T. Modelling past migrations to determine efficient management rules favouring silver eel escapement from a large regulated Floodplain Lake. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Teichert N, Tétard S, Trancart T, de Oliveira E, Acou A, Carpentier A, Bourillon B, Feunteun E. Towards transferability in fish migration models: A generic operational tool for predicting silver eel migration in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140069. [PMID: 32544695 DOI: 10.1016/j.scitotenv.2020.140069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
In the global context of river fragmentation, predicting fish migration is urgent to implement management actions aimed at protecting and promoting the free movement of diadromous fish. However, large-scale applicability of conservation measures requires transferable models that enable prediction of migration even in data-poor regions. Here, we surveyed 12 contrasted European river sites to predict the activity peaks of silver eels (Anguilla anguilla) during river migration towards spawning areas through an ensemble modelling approach. Site-specific Boosted Regression Tree (BRT) models were adjusted using standardized hydrological variables to predict migration probability, which were aggregated in consensus predictions. Results of independent cross-validations demonstrated that silver eel migration runs were accurately predicted in response to changes in river discharge. Transferability and predictive performance were improved by considering catchment-size dissimilarity between river sites (85 to 109,930 km2) when combining the site-specific predictions. Nevertheless, we provided two examples for which the effects of human actions on flow conditions were so high that they prevented reliable predictions of migration runs. Further contributions should thus take advantage of the flexibility of our approach for updating model collection with new sites to extend the predictive performance under a larger range of ecological conditions. Our transferable hydrological-based modelling framework offers an opportunity to implement large-scale management strategies for eel conservation, even in rivers where eel monitoring data lack. The BRT models and prediction functions were compiled in an R package named 'silvRpeak' to facilitate operational implementation by end-user managers, which can determine when mitigation measures should be implemented to improve river continuity (e.g. turbine shutdown and sluice gate opening) and balance their economic activity towards eel conservation. The only input required is discharge records that are widely available across European hydrological stations.
Collapse
Affiliation(s)
- Nils Teichert
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Paris, France; MNHN, Station Marine de Dinard, CRESCO, Dinard, France.
| | - Stéphane Tétard
- EDF R&D LNHE - Laboratoire National d'Hydraulique et Environnement, Chatou, France
| | - Thomas Trancart
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Paris, France; MNHN, Station Marine de Dinard, CRESCO, Dinard, France
| | - Eric de Oliveira
- EDF R&D LNHE - Laboratoire National d'Hydraulique et Environnement, Chatou, France
| | - Anthony Acou
- Office Français pour la Biodiversité - UMS OFB-CNRS-MNHN PatriNat, Station marine du MNHN, Dinard, France; Pôle R&D OFB-INRAE-Agrocampus Ouest-UPPA pour la gestion des migrateurs amphihalins dans leur environnement, Rennes, France
| | - Alexandre Carpentier
- Université de Rennes 1 - Unité BOREA (Museum national d'histoire Naturelle, Sorbonne Université, CNRS, UCN, IRD, UA), Rennes, France
| | - Bastien Bourillon
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Paris, France; MNHN, Station Marine de Dinard, CRESCO, Dinard, France
| | - Eric Feunteun
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Paris, France; MNHN, Station Marine de Dinard, CRESCO, Dinard, France
| |
Collapse
|