1
|
Magaju D, Montgomery J, Franklin P, Baker C, Friedrich H. Machine learning based assessment of small-bodied fish tracking to evaluate spoiler baffle fish passage design. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116507. [PMID: 36270125 DOI: 10.1016/j.jenvman.2022.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Fish passage research is important to mitigate the adverse effects of fragmented river habitats caused by waterway structures. The scale at which this research is undertaken varies from small-scale laboratory prototype studies to in-situ observations at various fish passage structures and bottlenecks. Using DeepLabCut, we introduce and evaluate a machine learning based workflow to track small-bodied fish in order to facilitate improved fish passage management. We specifically studied the behaviour and kinematics of Galaxias maculatus, a widespread diadromous Southern Hemisphere fish species. Upstream fish passage was studied in the presence of three different patches of spoiler baffles at an average water velocity of 0.4 m/s. In semi-supervised mode, the fish locations were extracted, and fish behaviour, such as swimming pathways and resting locations, was analysed based on extracted positions and recorded kinematic parameters. Individual fish behaviour and kinematic parameters were then used to assess the suitability of the three different spoiler baffle designs for enhancing fish passage. Using this technique, we were able to demonstrate where different spoiler baffle configurations resulted in significant differences in fish passage success and behaviour. For example, medium-spaced smaller baffles provided more accessible and uniform resting locations, which were required for efficient upstream passage. Results are discussed in relation to fish passage management at small instream structures.
Collapse
Affiliation(s)
- Dipendra Magaju
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand.
| | - John Montgomery
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Paul Franklin
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
| | - Cindy Baker
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand
| | - Heide Friedrich
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Wang Y, Li B, Yang G. Stream water quality optimized prediction based on human activity intensity and landscape metrics with regional heterogeneity in Taihu Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4986-5004. [PMID: 35978234 DOI: 10.1007/s11356-022-22536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The driving effects of landscape metrics on water quality have been acknowledged widely, however, the guiding significance of human activity intensity and landscape metrics based on reference conditions for water environment management remains to be explored. Thus, we used the self-organized map, long- and short-term memory (LSTM) algorithm, and geographic detectors to simulate the response of human activity intensity and landscape metrics to water quality in Taihu Lake Basin, China. Fitting results of LSTM displayed that the accuracy was acceptable, and scenario 2 (regional heterogeneity) was more efficient than scenario 1 (regional consistent) in the improvement of water quality. In the driving analysis for the reference conditions, clusters I and II (urban agglomeration areas) were mainly affected by the amount of production wastewater per unit of developed land and the amount of livelihood wastewater per unit of developed land, respectively. Their optimal values were 0.09 × 103 t/km2 (reduction of 35.71%) and 0.2 × 103 t/km2 (reduction of 4.76%). Cluster III (agricultural production areas) was mainly affected by interference intensity, and the optimal value was 2.17 (increased 38.22%), and cluster IV (ecological forest areas) was mainly affected by the fragmentation of cropland, and the optimal value was 1.14 (reduction of 1.72%). The research provides a reference for the prediction of water quality response and presents an ecological and economic sustainability way for watershed governance.
Collapse
Affiliation(s)
- Ya'nan Wang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Bing Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Guishan Yang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Nanjing, University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
3
|
Bernthal FR, Armstrong JD, Nislow KH, Metcalfe NB. Nutrient limitation in Atlantic salmon rivers and streams: Causes, consequences, and management strategies. AQUATIC CONSERVATION : MARINE AND FRESHWATER ECOSYSTEMS 2022; 32:1073-1091. [PMID: 35915662 PMCID: PMC9314074 DOI: 10.1002/aqc.3811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 06/16/2023]
Abstract
Freshwater catchments can experience nutrient deficits that result in reduced primary and secondary productivity. The most commonly limiting nutrients are nitrogen and phosphorus, either separately or together. This review considers the impact of increasing nutrient limitation in temperate basin stream and river systems, focusing on upland areas that currently or previously supported wild Atlantic salmon (Salmo salar) populations.Anthropogenic changes to land use and increases in river barriers have altered upland nutrient dynamics, with particular impacts on salmon and other migratory fish species which may be net importers of nutrients to upland streams. Declining salmon populations may further reduce nutrient sources, reducing ecosystem and fisheries productivity below desired levels.Experimental manipulations of nutrient levels have examined the impacts of this cultural oligotrophication. There is evidence that growth and biomass of juvenile salmon can be increased via appropriate additions of nutrients, offering potential as a conservation tool. However, further research is required to understand the long-term effects of these additions on salmon populations and stream ecosystems, and to assess the vulnerability of downstream habitats to eutrophication as a result.Although purposeful nutrient addition with the aim of enhancing and conserving salmonid populations may be justified in some cases, it should be undertaken in an adaptive management framework. In addition, nutrient addition should be linked to nutrient retention and processing, and integrated into large-scale habitat restoration and recovery efforts.Both the scientific and the management community should recognize that the ecological costs and benefits associated with adding nutrients to salmon streams may change in a non-stationary world.
Collapse
Affiliation(s)
- Fionn R. Bernthal
- Institute of Biodiversity Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| | - John D. Armstrong
- Marine Scotland – ScienceFreshwater Fisheries LaboratoryFaskallyPitlochryUK
| | - Keith H. Nislow
- USDA Forest Service Northern Research StationAmherstMassachusettsUSA
| | - Neil B. Metcalfe
- Institute of Biodiversity Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
4
|
Assessment of Fish Abundance, Biodiversity and Movement Periodicity Changes in a Large River over a 20-Year Period. ENVIRONMENTS 2022. [DOI: 10.3390/environments9020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A river is an ecosystem where fish fauna represents an important structural element. To re-establish connectivity, it is imperative to allow movement between functional habitats. Due to the hydromorphological complexity of large anthropized rivers and the lack of study techniques that can be used in such environments, relevant data with regard to fish ecology are scarce. On the River Meuse, Belgium, at a point 323 km upstream from the North Sea, the Lixhe hydroelectric dam is equipped with two fishways. Both were continuously monitored using capture traps for 20 consecutive years (from 1999 to 2018), representing 4151 monitoring events. The objectives of the present study were to describe the overall abundance and movement indicators of mainly holobiotic potamodromous fish species and to analyse their temporal evolution. We captured 388,631 individuals (n = 35 fish species) during the 20 years of fishway monitoring; 22.7% were adults (>75% of which were cyprinids), and 83.3% juveniles (>90% cyprinids). From 1999 to 2018, the results showed a drastic reduction in yearly captures for some native species as well as the apparent emergence of non-native (e.g., Silurus glanis) and reintroduced species (e.g., Salmo salar). The annual capture periodicities associated with environmental factors were clearly defined and were mostly related to the spring spawning migration of the adult stage. This long-term monitoring demonstrated how the fishways are used by the whole fish community and allowed a better understanding of their movement ecology in a large lowland anthropized river. The appearance of non-native species and the drastic decline in abundance of some common and widespread European fish should prompt river managers to adopt conservation measures.
Collapse
|
5
|
Bubb DH, Birnie-Gauvin K, Tummers JS, Aarestrup K, Jepsen N, Lucas MC. Short-Term Effects of Low-Head Barrier Removals on Fish Communities and Habitats. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.697106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Barrier removal is increasingly being seen as the optimal solution to restore lotic habitat and fish communities, however, evidence of its efficacy is often limited to single sites or catchments. This study used a before–after methodology to examine the short-term (average, 541 days) effects of low-head (0.1–2.9 m) barrier removal at 22 sites distributed across Denmark and northern England on fish density, community, and river habitat responses. Following barrier removal, changes in the aquatic habitat were observed, such that the area immediately upstream of the former barrier location became shallower, with larger substrate and faster flow conditions. The reinstatement of this habitat was especially valuable in Danish streams, where these habitat features are rare, due to the naturally low gradients. Across all 22 sites fish species richness and diversity was similar before and after removal of barriers, likely because of the short study timescale (1–2 years). Across all sites combined, there was an increase in total fish density following barrier removal. A large increase in salmonid (Salmo trutta and Salmo salar) densities following barrier removal occurred at 7 out of 12 Danish sites. No similar response in salmonid density was observed at any of the UK sites which were mostly characterized by high channel gradients and short ponded zones. Two UK barrier removal sites showed marked increases in density of non-salmonid fish species. This study suggests that the removal of low-head barriers can be an effective method of restoring lotic habitats, and can lead to positive changes in fish density in the former ponded zone. The short-term effect of small barrier removal on the fish community is more variable and its effectiveness is likely to be determined by wider riverine processes.
Collapse
|
6
|
Meixler MS. A species-specific fish passage model based on hydraulic conditions and water temperature. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Tamario C, Degerman E, Polic D, Tibblin P, Forsman A. Size, connectivity and edge effects of stream habitats explain spatio-temporal variation in brown trout ( Salmo trutta) density. Proc Biol Sci 2021; 288:20211255. [PMID: 34666525 PMCID: PMC8527210 DOI: 10.1098/rspb.2021.1255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
Ecological theory postulates that the size and isolation of habitat patches impact the colonization/extinction dynamics that determine community species richness and population persistence. Given the key role of lotic habitats for life-history completion in rheophilic fish, evaluating how the distribution of swift-flowing habitats affects the abundance and dynamics of subpopulations is essential. Using extensive electrofishing data, we show that merging island biogeography with meta-population theory, where lotic habitats are considered as islands in a lentic matrix, can explain spatio-temporal variation in occurrence and density of brown trout (Salmo trutta). Subpopulations in larger and less isolated lotic habitat patches had higher average densities and smaller between-year density fluctuations. Larger lotic habitat patches also had a lower predicted risk of excessive zero-catches, indicative of lower extinction risk. Trout density further increased with distance from the edge of adjacent lentic habitats with predator (Esox lucius) presence, suggesting that edge- and matrix-related mortality contributes to the observed patterns. These results can inform the prioritization of sites for habitat restoration, dam removal and reintroduction by highlighting the role of suitable habitat size and connectivity in population abundance and stability for riverine fish populations.
Collapse
Affiliation(s)
- Carl Tamario
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, 392 31 Kalmar, Sweden
| | - Erik Degerman
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Daniela Polic
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, 392 31 Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, 392 31 Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, 392 31 Kalmar, Sweden
| |
Collapse
|