1
|
Larson DM, Bungula W, McKean C, Stockdill A, Lee A, Miller FF, Davis K. Quantifying ecosystem states and state transitions of the Upper Mississippi River System using topological data analysis. PLoS Comput Biol 2023; 19:e1011147. [PMID: 37285341 DOI: 10.1371/journal.pcbi.1011147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Aquatic systems worldwide can exist in multiple ecosystem states (i.e., a recurring collection of biological and chemical attributes), and effectively characterizing multidimensionality will aid protection of desirable states and guide rehabilitation. The Upper Mississippi River System is composed of a large floodplain river system spanning 2200 km and multiple federal, state, tribal and local governmental units. Multiple ecosystem states may occur within the system, and characterization of the variables that define these ecosystem states could guide river rehabilitation. We coupled a long-term (30-year) highly dimensional water quality monitoring dataset with multiple topological data analysis (TDA) techniques to classify ecosystem states, identify state variables, and detect state transitions over 30 years in the river to guide conservation. Across the entire system, TDA identified five ecosystem states. State 1 was characterized by exceptionally clear, clean, and cold-water conditions typical of winter (i.e., a clear-water state); State 2 had the greatest range of environmental conditions and contained most the data (i.e., a status-quo state); and States 3, 4, and 5 had extremely high concentrations of suspended solids (i.e., turbid states, with State 5 as the most turbid). The TDA mapped clear patterns of the ecosystem states across several riverine navigation reaches and seasons that furthered ecological understanding. State variables were identified as suspended solids, chlorophyll a, and total phosphorus, which are also state variables of shallow lakes worldwide. The TDA change detection function showed short-term state transitions based on seasonality and episodic events, and provided evidence of gradual, long-term changes due to water quality improvements over three decades. These results can inform decision making and guide actions for regulatory and restoration agencies by assessing the status and trends of this important river and provide quantitative targets for state variables. The TDA change detection function may serve as a new tool for predicting the vulnerability to undesirable state transitions in this system and other ecosystems with sufficient data. Coupling ecosystem state concepts and TDA tools can be transferred to any ecosystem with large data to help classify states and understand their vulnerability to state transitions.
Collapse
Affiliation(s)
- Danelle Marie Larson
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States of America
| | - Wako Bungula
- University of Wisconsin La-Crosse, Department of Mathematics and Statistics, La Crosse, Wisconsin, United States of America
| | - Casey McKean
- University of Wisconsin La-Crosse, Research Experience for Undergraduates Program, La Crosse, Wisconsin, United States of America
| | - Alaina Stockdill
- University of Wisconsin La-Crosse, Research Experience for Undergraduates Program, La Crosse, Wisconsin, United States of America
| | - Amber Lee
- University of Wisconsin La-Crosse, Research Experience for Undergraduates Program, La Crosse, Wisconsin, United States of America
| | - Frederick Forrest Miller
- University of Wisconsin La-Crosse, Research Experience for Undergraduates Program, La Crosse, Wisconsin, United States of America
| | - Killian Davis
- University of Wisconsin La-Crosse, Research Experience for Undergraduates Program, La Crosse, Wisconsin, United States of America
| |
Collapse
|
2
|
Bouska KL, De Jager NR, Houser JN. Resisting-Accepting-Directing: Ecosystem Management Guided by an Ecological Resilience Assessment. ENVIRONMENTAL MANAGEMENT 2022; 70:381-400. [PMID: 35661235 DOI: 10.1007/s00267-022-01667-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
As anthropogenic influences push ecosystems past tipping points and into new regimes, complex management decisions are complicated by rapid ecosystem changes that may be difficult to reverse. For managers who grapple with how to manage ecosystems under novel conditions and heightened uncertainty, advancing our understanding of regime shifts is paramount. As part of an ecological resilience assessment, researchers and managers have collaborated to identify alternate regimes and build an understanding of the thresholds and factors that govern regime shifts in the Upper Mississippi River System. To describe the management implications of our assessment, we integrate our findings with the recently developed resist-accept-direct (RAD) framework that explicitly acknowledges ecosystem regime change and outlines management approaches of resisting change, accepting change, or directing change. More specifically, we developed guidance for using knowledge of desirability of current conditions, distance to thresholds, and general resilience (that is, an ecosystem's capacity to cope with uncertain disturbances) to navigate the RAD framework. We applied this guidance to outline strategies that resist, accept, or direct change in the context of management of aquatic vegetation, floodplain vegetation, and fish communities across nearly 2000 river kilometers. We provide a case study for how knowledge of ecological dynamics can aid in assessing which management approach(es) are likely to be most ecologically feasible in a changing world. Continued learning from management decisions will be critical to advance our understanding of how ecosystems respond and inform the management of ecosystems for desirable and resilient outcomes.
Collapse
Affiliation(s)
- Kristen L Bouska
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA.
| | - Nathan R De Jager
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| | - Jeffrey N Houser
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| |
Collapse
|
3
|
Annual summer submersed macrophyte standing stocks estimated from long-term monitoring data in the Upper Mississippi River. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2022. [DOI: 10.3996/jfwm-21-063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
System-scale restoration efforts within the Upper Mississippi River National Wildlife and Fish Refuge have included annual monitoring of submersed aquatic vegetation (SAV) since 1998 in four representative reaches spanning ~440 river km. We developed predictive models relating monitoring data (site-scale SAV abundance indices) to diver-harvested SAV biomass, used the models to back-estimate annual standing stock biomass between 1998 and 2018 and compared biomass estimates to previous abundance measures. Two morphologically distinct groups of SAV with differing sampling efficiencies were modeled and estimated separately: the first category included only wild celery Vallisneria americana, which has long, unbranched leaves and dominates lotic environments, while the second category included 17 branched morphology species (e.g., hornwort Ceratophyllum demersum and Canadian water weed Elodea canadensis) and dominates lentic environments. Wild celery accounted for approximately half of total estimated total biomass in the four reaches, combined branched species accounted for half, and invasive species (Eurasian watermilfoil Myriophyllum spicatum and curly-leaf pondweed Potamogeton crispus), a fraction of the branched species, accounted for <1.5%. Site-scale SAV estimates ranged from 0 to 535 g m-2 (dry mass). Increases in biomass were observed in most areas between 1998 and 2009 and substantial increases (e.g., from <10 g m-2 to ~125 g m-2) in wild celery observed in extensive impounded areas between 2002 and 2007. Analyses also indicate a transitional period in 2007-2010 during which changes in biomass trajectories were evident in all reaches, and included the start of a nine-year, ~70% decrease in wild celery biomass in the southernmost impounded area. Biomass estimates provided new insights and illustrated scales of change that were not previously apparent using traditional metrics. The ability to estimate biomass from LTRM monitoring data improves conservation efforts through better understanding of changes in habitat and food resources for biota, improved goal setting for restoration projects and improved quantification of SAV-mediated structural effects such as anchoring of sediments and feedbacks with water quality.
Collapse
|
4
|
Correa SB, van der Sleen P, Siddiqui SF, Bogotá-Gregory JD, Arantes CC, Barnett AA, Couto TBA, Goulding M, Anderson EP. OUP accepted manuscript. Bioscience 2022; 72:753-768. [PMID: 35923189 PMCID: PMC9343230 DOI: 10.1093/biosci/biac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Riverine floodplains are biologically diverse and productive ecosystems. Although tropical floodplains remain relatively conserved and ecologically functional compared to those at higher latitudes, they face accelerated hydropower development, climate change, and deforestation. Alterations to the flood pulse could act synergistically with other drivers of change to promote profound ecological state change at a large spatial scale. State change occurs when an ecosystem reaches a critical threshold or tipping point, which leads to an alternative qualitative state for the ecosystem. Visualizing an alternative state for Amazonian floodplains is not straightforward. Yet, it is critical to recognize that changes to the flood pulse could push tropical floodplain ecosystems over a tipping point with cascading adverse effects on biodiversity and ecosystem services. We characterize the Amazonian flood pulse regime, summarize evidence of flood pulse change, assess potential ecological repercussions, and provide a monitoring framework for tracking flood pulse change and detecting biotic responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thiago B A Couto
- Florida International University Institute of Environment and a member of the Tropical Rivers Lab
| | | | | |
Collapse
|
5
|
Li B, Wang Y, Tan W, Saintilan N, Lei G, Wen L. Land cover alteration shifts ecological assembly processes in floodplain lakes: Consequences for fish community dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146724. [PMID: 33848859 DOI: 10.1016/j.scitotenv.2021.146724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Habitat degradation is expected to alter community structure and consequently, ecosystem functions including the maintenance of biodiversity. Understanding the underlying abiotic and biotic assembly mechanisms controlling temporal and spatial community structure and patterns is a central issue in biodiversity conservation. In this study, using monthly time series of fish abundance data collected over a three-year period, we compared the temporal community dynamics in natural habitats and poplar plantations in one of the largest river-lake floodplain ecosystems in China, the Dongting Lake. We found a prevailing strong positive species covariance, i.e. species abundance changes in the same way, in all communities that was significantly negatively impacted by higher water nutrient levels. In contrast to species covariance, community stability, which was measured by the average of aggregated abundance divided by temporal standard deviation, was significantly higher in poplar plantations than in natural habitats. The positive species covariance, which was consistent for both wet and dry years and among habitat types, had significantly negative effects on community stability. Furthermore, our results demonstrated that the ecological stochasticity (i.e. community assembly processes generating diversity patterns that are indistinguishable from random chance) was significantly higher in natural sites than in poplar plantations, suggesting that deterministic processes might control the community composition (richness and abundance) at the modified habitat through reducing species synchrony and positive species covariance observed in the natural habitats, leading to significantly lower temporal β-diversity. When combined, our results suggest that habitat modification created environmental conditions for the development of stable fish community in the highly dynamic floodplains, leading to niche-based community with lower temporal β-diversity.
Collapse
Affiliation(s)
- Bin Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuyu Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenzhuo Tan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Neil Saintilan
- Department of Earth and Environmental Sciences, Macquarie University, Sydney 2109, Australia
| | - Guangchun Lei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Li Wen
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; Science Division, NSW Department of Planning, Industry and Environment, Sydney 2124, Australia.
| |
Collapse
|
6
|
Zaplata MK, Nhabanga A, Stalmans M, Volpers T, Burkart M, Sperfeld E. Grasses cope with high‐contrast ecosystem conditions in the large outflow of the Banhine wetlands, Mozambique. Afr J Ecol 2020. [DOI: 10.1111/aje.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - Erik Sperfeld
- Animal Ecology Zoological Institute and Museum University of Greifswald Greifswald Germany
| |
Collapse
|
7
|
Regime change in a large-floodplain river ecosystem: patterns in body-size and functional biomass indicate a shift in fish communities. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02330-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|