1
|
Yamaguchi T, Kim HJ, Park HJ, Kim T, Khalid Z, Park JK, Oh JM. Controlling the Surface Morphology of Two-Dimensional Nano-Materials upon Molecule-Mediated Crystal Growth. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2363. [PMID: 37630948 PMCID: PMC10458610 DOI: 10.3390/nano13162363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The surface morphology of Mg-Al-layered double hydroxide (LDH) was successfully controlled by reconstruction during systematic phase transformation from calcined LDH, which is referred to as layered double oxide (LDO). The LDH reconstructed its original phase by the hydration of LDO with expanded basal spacing when reacted with water, including carbonate or methyl orange molecules. During the reaction, the degree of crystal growth along the ab-plane and stacking along the c-axis was significantly influenced by the molecular size and the reaction conditions. The lower concentration of carbonate gave smaller particles on the surface of larger LDO (2000 nm), while the higher concentration induced a sand-rose structure. The reconstruction of smaller-sized LDH (350 nm) did not depend on the concentration of carbonate due to effective adsorption, and it gave a sand-rose structure and exfoliated the LDH layers. The higher the concentration of methyl orange and the longer the reaction time applied, the rougher the surface was obtained with a certain threshold point of the methyl orange concentration. The surface roughness generally increased with the loading mount of methyl orange. However, the degree of the surface roughness even increased after the methyl orange loading reached equilibrium. The result suggested that the surface roughening was mediated by not only the incorporation of guest molecules into the LDH but also a crystal arrangement after a sufficient amount of methyl orange was accommodated.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea (T.K.)
| | - Hyoung-Jun Kim
- Plasma Convergence R&BD Division, Cheorwon Plasma Research Institute, 1620, Hoguk-ro, Galmal-eup, Cherwon-gun 24047, Gangwon-do, Republic of Korea;
| | - Hee Jung Park
- KBSI Western Seoul Center, University-Industry Cooperation Building, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea;
| | - Taeho Kim
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea (T.K.)
| | - Zubair Khalid
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea (T.K.)
| | - Jin Kuen Park
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Gyeonggi-do, Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea (T.K.)
| |
Collapse
|
2
|
Kim HJ, Lagarrigue P, Oh JM, Soulié J, Salles F, Cazalbou S, Drouet C. Biocompatible MgFeCO 3 Layered Double Hydroxide (LDH) for Bone Regeneration-Low-Temperature Processing through Cold Sintering and Freeze-Casting. Bioengineering (Basel) 2023; 10:734. [PMID: 37370665 DOI: 10.3390/bioengineering10060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Layered Double Hydroxides (LDHs) are inorganic compounds of relevance to various domains, where their surface reactivity and/or intercalation capacities can be advantageously exploited for the retention/release of ionic and molecular species. In this study, we have explored specifically the applicability in the field of bone regeneration of one LDH composition, denoted "MgFeCO3", of which components are already present in vivo, so as to convey a biocompatibility character. The propensity to be used as a bone substitute depends, however, on their ability to allow the fabrication of 3D constructs able to be implanted in bone sites. In this work, we display two appealing approaches for the processing of MgFeCO3 LDH particles to prepare (i) porous 3D scaffolds by freeze-casting, involving an alginate biopolymeric matrix, and (ii) pure MgFeCO3 LDH monoliths by Spark Plasma Sintering (SPS) at low temperature. We then explored the capacity of such LDH particles or monoliths to interact quantitatively with molecular moieties/drugs in view of their local release. The experimental data were complemented by computational chemistry calculations (Monte Carlo) to examine in more detail the mineral-organic interactions at play. Finally, preliminary in vitro tests on osteoblastic MG63 cells confirmed the high biocompatible character of this LDH composition. It was confirmed that (i) thermodynamically metastable LDH could be successfully consolidated into a monolith through SPS, (ii) the LDH particles could be incorporated into a polymer matrix through freeze casting, and (iii) the LDH in the consolidated monolith could incorporate and release drug molecules in a controlled manner. In other words, our results indicate that the MgFeCO3 LDH (pyroaurite structure) may be seen as a new promising compound for the setup of bone substitute biomaterials with tailorable drug delivery capacity, including for personalized medicine.
Collapse
Affiliation(s)
- Hyoung-Jun Kim
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP, 31030 Toulouse, France
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | | | - Jae-Min Oh
- Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Jérémy Soulié
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP, 31030 Toulouse, France
| | - Fabrice Salles
- Institute Charles Gerhardt des Matériaux (ICGM), Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Sophie Cazalbou
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP, 31030 Toulouse, France
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP, 31030 Toulouse, France
| |
Collapse
|
3
|
Zambrano-Intriago LA, Daza-López EV, Fernández-Andrade A, Luque R, Amorim CG, Araújo AN, Rodríguez-Díaz JM, Montenegro MCBSM. Application of a novel hybrid MIL-53(Al)@rice husk for the adsorption of glyphosate in water: Characteristics and mechanism of the process. CHEMOSPHERE 2023; 327:138457. [PMID: 36948257 DOI: 10.1016/j.chemosphere.2023.138457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
The development of new materials that have a high capacity to remove pollutants in water-based media is becoming increasingly important because of the serious contamination of water and the negative impact on biodiversity and public health. The presence of glyphosate in water, the most widely used herbicide worldwide, has triggered alerts owing to the collateral effects it may cause on human health. The main objective of the present study was to investigate the potential of the hybrid material MIL-53(Al)@RH for the adsorption of glyphosate in aqueous solution. The material was obtained following the methodology of MIL-53(Al) synthesis in the presence of hydrolyzed rice husk assisted by microwave. Batch adsorption experiments were carried out to evaluate the adsorbent dosage, pH0 solution effect, contact time, adsorbate concentration, and temperature effect. The results demonstrated that a maximum adsorption capacity of 296.95 mg g-1, at pH0 4 with a ratio of 0.04 g MIL-53(Al)@RH/50 mL of solution, was achieved in 30 min. The Avrami and pseudo-second order models appropriately described the adsorption kinetics and the equilibrium by Langmuir and Sips models. The enthalpy changes (ΔH°) determined propose an endothermic reaction governed by chemisorption, corroborating the kinetic and equilibrium settings. Hydrogen bonds, π*-π interactions, and complexation between the metal centers of MIL-53(Al) and the anionic groups of glyphosate were postulated to be involved as adsorption mechanisms. Finally, for practical application, MIL-53(Al)@RH was packed in a column for a fixed-bed test which revealed that the hybrid can remove glyphosate with an adsorption capacity of 76.304 mg L-1, utilizing 90% of the bed.
Collapse
Affiliation(s)
- Luis Angel Zambrano-Intriago
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia - Universidade Do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Erlinjka Valentina Daza-López
- Programa de Posgrado en Ingeniería Química, Instituto de Posgrado, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo, 130104, Ecuador
| | - Alex Fernández-Andrade
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC0922302, Ecuador
| | - Célia G Amorim
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia - Universidade Do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Alberto N Araújo
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia - Universidade Do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador; Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador.
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia - Universidade Do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
4
|
Mostafa MS, Chen L, Selim MS, Betiha MA, Gao Y, Zhang R, Zhang S, Ge G. Novel TiO2@[TiO6]/CoTi layered double hydroxide as a superior ultraviolet/infrared heterojunction for enhanced infrared-prompted water splitting to hydrogen. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Cheng H, He H, Zhang Z, Xiao K, Liu Y, Kang X, Li X. Adsorption sites and electron transfer characteristics of methyl orange on three-dimensional hierarchical flower-like nanostructures of Co-Al-layered double hydroxides: Experimental and DFT investigation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Tang L, Xie X, Li C, Xu Y, Zhu W, Wang L. Regulation of Structure and Anion-Exchange Performance of Layered Double Hydroxide: Function of the Metal Cation Composition of a Brucite-like Layer. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7983. [PMID: 36431469 PMCID: PMC9697245 DOI: 10.3390/ma15227983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
As anion-exchange materials, layered double hydroxides (LDHs) have attracted increasing attention in the fields of selective adsorption and separation, controlled drug release, and environmental remediation. The metal cation composition of the laminate is the essential factor that determines the anion-exchange performance of LDHs. Herein, we review the regulating effects of the metal cation composition on the anion-exchange properties and LDH structure. Specifically, the internal factors affecting the anion-exchange performance of LDHs were analyzed and summarized. These include the intercalation driving force, interlayer domain environment, and LDH morphology, which significantly affect the anion selectivity, anion-exchange capacity, and anion arrangement. By changing the species, valence state, size, and mole ratio of the metal cations, the structural characteristics, charge density, and interlayer spacing of LDHs can be adjusted, which affect the anion-exchange performance of LDHs. The present challenges and future prospects of LDHs are also discussed. To the best of our knowledge, this is the first review to summarize the essential relationship between the metal ion composition and anion-exchange performance of laminates, providing important insights for regulating the anion-exchange performance of LDHs.
Collapse
Affiliation(s)
- Luwen Tang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of New Energy and Building Energy Saving, Guilin University of Technology, Guilin 541004, China
| | - Xiangli Xie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Cunjun Li
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Yanqi Xu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Wenfeng Zhu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Linjiang Wang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
7
|
Mittal J. Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113017. [PMID: 34216900 DOI: 10.1016/j.jenvman.2021.113017] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays, are lamellar inorganic solids with a brucite-like structure and consist of positively charged metal hydroxide sheets intercalated by anions and water molecules. Choice of LDH is beneficial as it displays properties like simple synthesis procedures, adjustable structure, stability, large surface area, homogeneous positive charge distribution over the surface, interplanar spacing, and versatility to synthesize a variety of composites. Due to these properties LDHs act as efficient adsorbents for wastewater treatment. This review presents a detailed overview of the removal of hazardous organic dyes using different LDHs and LDH-hybrids/composites. The review also incorporates methods of synthesis of various LDHs and composites and the effect of their morphology on dye removal capacity. The effects of adsorption variables such as pH, adsorbent dosage, initial concentration of dye, contact time on the adsorption of these materials are also explained along with adsorption isotherms, kinetics and operative mechanisms. This article incorporates 156 references, majority of which have been taken from the available literature of last 5 years.
Collapse
Affiliation(s)
- Jyoti Mittal
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, 462 003, India.
| |
Collapse
|
8
|
Lin J, Zhang Y, Zhang Q, Shang J, Deng F. Enhanced adsorption properties of organic ZnCr-LDH synthesized by soft template method for anionic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48236-48252. [PMID: 33905058 DOI: 10.1007/s11356-021-14035-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Organic ZnCr-LDH (ST-LDH) was synthesized by a facile one-step hydrothermal technique using methyl orange (MO) as a soft template agent, which can efficiently remove methyl orange (MO), Congo red (CR), and orange II (OII) from aqueous solution. The microstructure of ST-LDH by modifying changed obviously, from the cellular structure to the stacking structure formed by the face-face contact of hydrotalcite nanosheets, which resulted in much more exchangeable nitrate ions to remain in the interlayer space. The pre-insertion of benzene sulfonate as a pillar expanded the interlayer gallery, which facilitated the pollutant anions (MO, CR, and OII) into the interlayer of LDH in the subsequent adsorption process. The maximum adsorption capacity of ST-LDH for MO, CR, and OII was 4200.8 mg/g, 1252.0 mg/g, and 1670.6 mg/g, respectively, which is approximately 1.86 times, 1.8 times, and 2.32 times that of the pristine NO3-LDH, respectively. The removal mechanism of anionic dyes was determined as anion exchange between NO3- anions and dye molecules. The adsorption behavior for MO and OII is multilayer adsorption, while the adsorption behavior for CR is monolayer adsorption. The adsorption process mainly was controlled by the chemical bonding between the dye molecules and adsorbent active sites. The LDH can be effectively regenerated by photocatalysis after MO adsorption. The ST-LDH has a great potential to be used as a high-efficient adsorbent to remove anionic dyes from aqueous solution. The schematic illustration of the synthetic process of soft template agent modified and unmodified hydrotalcites by one-pot hydrothermal method and the adsorption process of MO by ST-LDH were shown in Fig. 12. Modified hydrotalcite (ST-LDH) was prepared using methyl orange (MO) as a soft template agent. Compared with unmodified hydrotalcite (NO3-LDH), the insertion of benzene sulfonate anions into the hydrotalcite layer resulted in the increase of the interlayer spacing from 8.269 to 8.654Å. The LDH host structure pre-intercalated by benzene sulfonate anions evolved into pillared materials in interlayer; benzene sulfonate anions as a column expanded the interlayer spacing of (003) base plane, which facilitated the pollutant anions (MO, CR, and OII) into the interlayer of ST-LDH and exchanged with NO3- anion in the subsequent adsorption process. It can be inferred that in the process of modification hydrotalcite by benzene sulfonate, a small amount of benzene sulfonate anions pre-inserted into the gallery of hydrotalcite with a monolayer model in the process of hydrotalcite modification, and its inclination angle is calculated to be about 29.1°. After ST-LDH sample adsorbed the MO molecules, dye molecules intercalated into the LDH host, and successful exchange with NO3- anions, the d003 value increased to 24.78 Å. A large amount of MO- anions were intercalated into the gallery of ST-LDH with a bilayer model according to the Freundlich isotherm model, and the tilting angle increases to 53.6°. The adsorption capacity of MO by ST-LDH was significantly enhanced to 4200.8 mg/g, which was much higher than that of NO3-LDH (2252.8 mg/g). Schematic illustration of the synthetic process of LDH materials and adsorption process of MO by ST-LDH.
Collapse
Affiliation(s)
- Jia Lin
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yude Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China.
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454000, China.
- Wuxi Feile High-performance Materials Co. Ltd., Wuxi, 214000, China.
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China.
- Collaborative Innovation Center of Coal Work Safety of Henan Province, Jiaozuo, 454000, China.
- Wuxi Feile High-performance Materials Co. Ltd., Wuxi, 214000, China.
| | - Jinli Shang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Fuyao Deng
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| |
Collapse
|
9
|
Rojas S, Torres A, Dato V, Salles F, Ávila D, García-González J, Horcajada P. Towards improving the capacity of UiO-66 for antibiotic elimination from contaminated water. Faraday Discuss 2021; 231:356-370. [PMID: 34240086 DOI: 10.1039/d1fd00019e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibiotics are found in natural waters, raising concern about their human and environmental toxicity and the wide occurrence of antibiotic resistant bacteria. The antibiotic resistance crisis is attributed to the overuse and misuse of these medications. Particularly, sulfamethazine (SMT), an antibiotic commonly used in pigs and cattle for the treatment of bacterial diseases, has been detected in the natural environment (soil and water). Among all the technologies developed to combat the deteriorating water quality and control antimicrobial resistance, heterogeneous photocatalysis should be highlighted for the degradation of refractory organic compounds. Here, we described the SMT adsorption and photodegradation capacity of a highly porous and robust zirconium-based MOF UiO-66 under realistic conditions, and its potential recyclability. Further, its SMT removal capacity was improved by functionalizing the MOF porosity (28.5% of SMT adsorption in 24 h for nanoUiO-66-NH2), and nanosizing the MOF (100% SMT photodegradation in only 4 h for nanoUiO-66). Finally, the safety of the formed by-product during SMT photodegradation was confirmed, reinforcing the potential of the application of UiO-66 in water remediation.
Collapse
Affiliation(s)
- Sara Rojas
- Advanced Porous Materials Unit, IMDEA Energy, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain. and Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Ana Torres
- Advanced Porous Materials Unit, IMDEA Energy, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain.
| | - Víctor Dato
- Advanced Porous Materials Unit, IMDEA Energy, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain.
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - David Ávila
- Department of Inorganic Chemistry, Chemical Sciences Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jessica García-González
- Department of Nursing, Faculty of Health and Social Sciences, University of Murcia, Campus de Lorca, 30800 Murcia, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain.
| |
Collapse
|
10
|
Development of Mesopore Structure of Mixed Metal Oxide through Albumin-Templated Coprecipitation and Reconstruction of Layered Double Hydroxide. NANOMATERIALS 2021; 11:nano11030620. [PMID: 33801502 PMCID: PMC7999424 DOI: 10.3390/nano11030620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 01/27/2023]
Abstract
Mixed metal oxide (MMO) with relatively homogeneous mesopores was successfully obtained by calcination and reconstruction of albumin-templated layered double hydroxide (LDH). The aggregation degree of albumin-template was controlled by adjusting two different synthesis routes, coprecipitation and reconstruction. X-ray diffraction patterns and scanning electron microscopic images indicated that crystal growth of LDH was fairly limited during albumin-templated coprecipitation due to the aggregation. On the hand, crystal growth along the lateral direction was facilitated in albumin-templated reconstruction due to the homogeneous distribution of proteins moiety. Different state of albumin during LDH synthesis influenced the local disorder and porous structure of calcination product, MMO. The N2 adsorption-desorption isotherms demonstrated that calcination on reconstructed LDH produced MMO with large specific surface area and narrow distribution of mesopores compared with calcination of coprecipitated LDH.
Collapse
|
11
|
Jung SY, Kim HM, Hwang S, Jeung DG, Rhee KJ, Oh JM. Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System. Pharmaceutics 2020; 12:E1210. [PMID: 33327415 PMCID: PMC7764879 DOI: 10.3390/pharmaceutics12121210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
A layered double hydroxide (LDH)-based anticancer delivery system was investigated in terms of crystalline phase, particle size, hydrodynamic radius, zeta potential, etc. through in vitro and in vivo study. Size controlled LDH with anticancer drug methotrexate (MTX) incorporation was successfully prepared through step-by-step hydrothermal reaction and ion-exchange reaction. The MTX-LDH was determined to have a neutral surface charge and strong agglomeration in the neutral aqueous condition due to the surface adsorbed MTX; however, the existence of proteins in the media dramatically reduced agglomeration, resulting in the hydrodynamic radius of MTX-LDH being similar to the primary particle size. The protein fluorescence quenching assay exhibited that MTX readily reduced the fluorescence of proteins, suggesting that the interaction between MTX and proteins was strong. On the other hand, MTX-LDH showed much less binding constant to proteins compared with MTX, implying that the protein interaction of MTX was effectively blocked by the LDH carrier. The in vivo hemolysis assay after intravenous injection of MTX-LDH showed neither significant reduction in red blood cell number nor membrane damage. Furthermore, the morphology of red blood cells in a mouse model did not change upon MTX-LDH injection. Scanning electron microscopy showed that the MTX-LDH particles were attached on the blood cells without serious denaturation of cellular morphology, taking advantage of the cell hitchhiking property.
Collapse
Affiliation(s)
- Sang-Yong Jung
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Jung-gu, Korea; (S.-Y.J.); (D.-G.J.)
| | - Hyoung-Mi Kim
- Department of Chemistry and Medical Chemistry, Yonsei University MIRAE Campus, College of Science and Technology, Wonju 26493, Gangwon-do, Korea;
| | - Soonjae Hwang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Gangwon-do, Korea;
| | - Do-Gak Jeung
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Jung-gu, Korea; (S.-Y.J.); (D.-G.J.)
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, Yonsei University MIRAE Campus, College of Health Sciences, Wonju 26493, Gangwon-do, Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Jung-gu, Korea; (S.-Y.J.); (D.-G.J.)
| |
Collapse
|