1
|
Zhou X, Yang J, Sha A, Zhuang Z, Bai S, Sun H, Zhao X. Enhancing environmental and economic benefits of constructed wetlands through plant recovery: A life cycle perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175784. [PMID: 39187084 DOI: 10.1016/j.scitotenv.2024.175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Plant recovery plays a vital role in reclaiming bioresources from constructed wetland wastewater treatment systems. A comprehensive understanding of the environmental impacts and economic benefits associated with various wetland plant resourcing methods is critical for advancing both plant resource recovery and the application of wetlands in wastewater treatment. In this study, life cycle assessment was employed to evaluate the environmental impacts and costs of seven wetland plant recovery methods. In addition, the potential benefits of extending plant resource recovery within system boundaries were explored to enhance the overall advantages of constructed wetlands for wastewater treatment. The use of wetland plants for biofertilizer production had the lowest environmental impact (-8.52E-03), whereas the use of wetland plants for biochar production was the most cost-effective approach (-0.80€/kg). The introduction of a plant resource recovery component could significantly reduce the environmental impacts of constructed wetland wastewater treatment systems. The environmental impacts and costs of constructed wetland wastewater treatment systems that incorporate plant resource recovery into the system boundary are better than activated sludge methods and highly efficient algal ponds, except for the global warming potential (GWP). The use of plants for biofertilizer production could cut the environmental impacts of constructed wetland wastewater treatment systems by up to 85 % and the costs by 65 %, making it the most suitable method of plant use. Additionally, prioritizing the reduction of greenhouse gas emissions from constructed wetlands should be a primary optimization goal. The findings of this study provide valuable support for the implementation of wetland plant resourcing in constructed wetland wastewater treatment systems.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Jixian Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China.
| | - Aiqi Sha
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhixuan Zhuang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Huihang Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Bi Y, Liu F, Fu Z, Qiao H, Wang J. Enhancing total nitrogen removal in constructed wetlands: A Comparative study of iron ore and biochar amendments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121873. [PMID: 39059309 DOI: 10.1016/j.jenvman.2024.121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Efficient nitrogen removal in constructed wetlands (CWs) remains challenging when treating agricultural runoff with a low carbon-to-nitrogen ratio (C/N). However, using biochar, iron ore, and FeCl3-modified biochar (Fe-BC) as amendments could potentially improve total nitrogen (TN) removal efficiency in CWs, but the underlying mechanisms associated with adding these substrates are unclear. In this study, five CWs: quartz sand constructed wetland (Control), biochar constructed wetland, Fe-BC constructed wetland, iron ore constructed wetland, and iron ore + biochar constructed wetland, were built to compare their treatment performance. The rhizosphere microbial community compositions and their co-occurrence networks were analyzed to reveal the underlying mechanisms driving their treatment performance. The results showed that iron ore was the most efficient amendment, although all treatments increased TN removal efficiency in the CWs. Ammonia-oxidizing, heterotrophic denitrifying, nitrate-dependent anaerobic ferrous oxidizing (NAFO), and Feammox bacteria abundance was higher in the iron ore system and led to the simultaneous removal of NH4+-N, NO3--N, and NO2--N. Visual representations of the co-occurrence networks further revealed that there was an increase in cooperative mutualism (the high proportion of positive links) and more complex interactions among genera related to the nitrogen and iron cycle (especially ammonia-oxidizing bacteria, heterotrophic denitrifying bacteria, NAFO bacteria, and Feammox bacteria) in the iron ore system, which ultimately contributed to the highest TN removal efficiency. This study provides critical insights into how different iron ore or biochar substrates could be used to treat agricultural runoff in CWs.
Collapse
Affiliation(s)
- Yucui Bi
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Fuxing Liu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Zishi Fu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Hongxia Qiao
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Junli Wang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| |
Collapse
|
3
|
González Álvarez Á, Martinez I Quer A, Ellegaard-Jensen L, Sapkota R, Carvalho PN, Johansen A. Fungal removal of cyanotoxins in constructed wetlands: The forgotten degraders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172590. [PMID: 38642746 DOI: 10.1016/j.scitotenv.2024.172590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Harmful cyanobacterial blooms have increased globally, releasing hazardous cyanotoxins that threaten the safety of water resources. Constructed wetlands (CWs) are a nature-based and low-cost solution to purify and remove cyanotoxins from water. However, bio-mechanistic understanding of the biotransformation processes expected to drive cyanotoxin removal in such systems is poor, and primarily focused on bacteria. Thus, the present study aimed at exploring the fungal contribution to microcystin-LR and cylindrospermopsin biodegradation in CWs. Based on CW mesocosms, two experimental approaches were taken: a) amplicon sequencing studies were conducted to investigate the involvement of the fungal community; and b) CW fungal isolates were tested for their microcystin-LR and cylindrospermopsin degradation capabilities. The data uncovered effects of seasonality (spring or summer), cyanotoxin exposure, vegetation (unplanted, Juncus effusus or Phragmites australis) and substratum (sand or gravel) on the fungal community structure. Additionally, the arbuscular mycorrhizal fungus Rhizophagus and the endophyte Myrmecridium showed positive correlations with cyanotoxin removal. Fungal isolates revealed microcystin-LR-removal potentials of approximately 25 % in in vitro biodegradation experiments, while the extracellular chemical fingerprint of the cultures suggested a potential intracellular metabolization. The results from this study may help us understand the fungal contribution to cyanotoxin removal, as well as their ecology in CWs.
Collapse
Affiliation(s)
- Ángela González Álvarez
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Alba Martinez I Quer
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Pedro N Carvalho
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark.
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; WATEC, Centre for Water Technology, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Wang Y, Fang J, Li X, Li C, Zhao Y, Liu J. Microorganisms Directly Affected Sediment Carbon–Nitrogen Coupling in Two Constructed Wetlands. WATER 2024; 16:1550. [DOI: 10.3390/w16111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Clarifying the carbon–nitrogen coupling pattern in wetlands is crucial for understanding the driving mechanism of wetland carbon sequestration. However, the impacts of plants and environmental factors on the coupling of carbon–nitrogen in wetland sediments are still unclear. Sediment samples from plant (Typha angustifolia and Phragmites australis)-covered habitats and bare land were collected in two constructed wetlands in northern China. The contents of different forms of carbon and nitrogen in sediments and plants, and the sediment microbial community were detected. It was found that the sediment carbon to nitrogen (C/N) ratios did not differ significantly in the bare sites of different wetlands, but did in the plant-covered sites, which highlighted the different role of plants in shifting the carbon–nitrogen coupling in different constructed wetlands. The effects of plants on the sediment carbon–nitrogen coupling differed in two constructed wetlands, so the structural equation model was used and found that sediment microorganisms directly affected sediment C/N ratios, while water and sediment physicochemical properties indirectly affected sediment C/N ratios by altering sediment microbial functions. Multiple linear regression models showed that water pH, sediment moisture content, water dissolved oxygen, and water depth had a greater influence on the carbon metabolism potential of the sediment microbial community, while sediment moisture content had the greatest impact on the sediment microbial nitrogen metabolism potential. The study indicates that variations in environmental conditions could alter the influence of plants on the carbon and nitrogen cycles of wetland sediments. Water environmental factors mainly affect microbial carbon metabolism functions, while soil physicochemical factors, especially water content, affect microbial carbon and nitrogen metabolism functions.
Collapse
Affiliation(s)
- Yan Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jiaohui Fang
- School of Life Sciences, Qufu Normal University, Qufu 273100, China
| | - Xin Li
- Jinan Environmental Research Academy, Jinan 250000, China
| | - Changchao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yongkang Zhao
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Gao X, Bi Y, Su L, Lei Y, Gong L, Dong X, Li X, Yan Z. Unveiling the nitrogen and phosphorus removal potential: Comparative analysis of three coastal wetland plant species in lab-scale constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119864. [PMID: 38109823 DOI: 10.1016/j.jenvman.2023.119864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
It is well accepted that tidal wetland vegetation performs a significant amount of water filtration for wetlands. However, there is currently little information on how various wetland plants remove nitrogen (N) and phosphorus (P) and how they differ in their denitrification processes. This study compared and investigated the denitrification and phosphorus removal effects of three typical wetland plants in the Yangtze River estuary wetland (Phragmites australis, Spartina alterniflora, and Scirpus mariqueter), as well as their relevant mechanisms, using an experimental laboratory-scale horizontal subsurface flow constructed wetland (CW). The results showed that all treatment groups with plants significantly reduced N pollutants as compared to the control group without plants. In comparison to S. mariqueter (77.2-83.2%), S. alterniflora and P. australis had a similar total nitrogen (TN)removal effectiveness of nearly 95%. With a removal effectiveness of over 99% for ammonium nitrogen (NH4+-N), P. australis outperformed S. alterniflora (95.6-96.8%) and S. mariqueter (94.6-96.5%). The removal of nitrite nitrogen (NO2--N)and nitrate nitrogen (NO3--N)from wastewater was significantly enhanced by S. alterniflora compared to the other treatment groups. Across all treatment groups, the removal rate of PO43--P was greater than 95%. P. australis and S. alterniflora considerably enriched more 15N than S. mariqueter, according to the results of the 15N isotope labeling experiment. While the rhizosphere and bulk sediments of S. alterniflora were enriched with more simultaneous desulfurization-denitrification bacterial genera (such as Paracoccus, Sulfurovum, and Sulfurimonas), which have denitrification functions, the rhizosphere and bulk sediments of P. australis were enriched with more ammonia-oxidizing archaea and ammonia-oxidizing bacteria. As a result, compared to the other plants, P. australis and S. alterniflora demonstrate substantially more significant ability to remove NH4+-N and NO2--N/NO3--N from simulated domestic wastewater.
Collapse
Affiliation(s)
- Xiaoqing Gao
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Yuxin Bi
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Lin Su
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Ying Lei
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Lv Gong
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Xinhan Dong
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Xiuzhen Li
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Zhongzheng Yan
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
| |
Collapse
|
6
|
Wei C, Su F, Yue H, Song F, Li H. Spatial distribution characteristics of denitrification functional genes and the environmental drivers in Liaohe estuary wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1064-1078. [PMID: 38030842 DOI: 10.1007/s11356-023-30938-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Genes nirS, nirK, and nosZ are specific for the denitrification process, which is associated with greenhouse gas N2O emission. The abundances and diversities of community containing these three genes are usually used as a common index to reflect the denitrification process, and they would be affected by differences in environmental factors caused by changes from warm to cold conditions. The quantification of denitrification in natural wetlands is complex, and straightforward identification of spatial distribution and drivers affecting the process is still developing. In this study, the bacterial communities, gene diversities, and relative abundances involved in denitrification were investigated in Liaohe Estuary Wetland. We analyzed the relative abundances, diversities, and communities of bacteria containing the three genes at warm and cold conditions using Illumina MiSeq sequencing and detected the potential environmental factors influencing their distribution by using a random forest algorithm. There are great differences in the community composition of the bacteria containing genes nirS, nirK, and nosZ. All the abundant taxa of nirS and nirK communities belonged to phylum Proteobacteria. Compared with the community composition of bacteria containing nirS and nirK, the community of bacteria containing nosZ is more diverse, and the subdivision taxa of phylum Euryarchaeota was also abundant in the community containing nosZ. The distribution characteristics of the relative abundance of nirS and nirK showed obvious differences both at warm and cold climate conditions. The oxidation-reduction potential, nitrite nitrogen, and salinity were detected as potential variables that might explain the diversity of nirS. The total nitrogen and nitrite nitrogen were the important variables for predicting the relative abundance of nirS at warm climate condition, while oxidation-reduction potential and pH contributed to the diversity of nirS at cold condition. The bulk density of sediment was detected as a potential variable affecting the relative abundance of nirK at warm and cold conditions, and diversity of nirK at warm condition, while nitrite nitrogen was detected as an important environmental factor for predicting the diversity of nirK at cold condition. Overall, our results show that the key environmental factors, which affect the relative abundance, diversity, and community of bacteria containing the functional denitrification genes, are not exactly the same, and the diversities of nirS, nirK, and nosZ have a higher environmental sensitivity than their relative abundances.
Collapse
Affiliation(s)
- Chao Wei
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| | - Fangli Su
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China.
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China.
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China.
| | - Hangyu Yue
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Fei Song
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| | - Haifu Li
- College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, 110866, Liaoning, China
- Liaoning Shuangtai Estuary Wetland Ecosystem Research Station, Panjin, 124112, Liaoning, China
- Liaoning Provincial Key Laboratory of Soil Erosion and Ecological Restoration, Shenyang, 110866, Liaoning, China
| |
Collapse
|
7
|
Wang J, Fu Z, Liu F, Qiao H, Bi Y. Effects of substrate improvement on winter nitrogen removal in riparian reed (Phragmites australis) wetlands: rhizospheric crosstalk between plants and microbes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95931-95944. [PMID: 37561302 DOI: 10.1007/s11356-023-29181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
With continued anthropogenic inputs of nitrogen (N) into the environment, non-point source N pollutants produced in winter cannot be ignored. As the water-soil interface zones, riparian wetlands play important roles in intercepting and buffering N pollutants. However, winter has the antagonistic effect on the N removal. Substrate improvement has been suggested as a strategy to optimize wetland performance and there remain many uncertainties about the inner mechanism. This study explores the effects of substrate improvement on N removal in winter and rhizospheric crosstalk between reed (Phragmites australis) and microbes in subtropical riparian reed wetlands. The rates of wetland N removal in winter, root metabolite profiles, and rhizosphere soil microbial community compositions were determined following the addition of different substrates (gravel, gravel + biochar, ceramsite + biochar, and modified ceramsite + biochar) to natural riparian soil. The results showed that the addition of different substrates to initial soil enhanced N removal from the microcosms in winter. Gravel addition increased NH4+-N removal by 8.3% (P < 0.05). Gravel + biochar addition increased both TN and NH4+-N removals by 8.9% (P < 0.05). The root metabolite characteristics and microbial community compositions showed some variations under different substrate additions compared to the initial soil. The three treatments involving biochar addition decreased lipid metabolites and enhanced the contents and variety of carbon sources in rhizosphere soil, while modified ceramsite + biochar addition treatment had a greater impact on the microbial community structure. There was evidence for a complex crosstalk between plants and microbes in the rhizosphere, and some rhizosphere metabolites were seen to be significantly correlated with the bacterial composition of the rhizospheric microbial community. These results highlighted the importance of rhizospheric crosstalk in regulating winter N removal in riparian reed wetland, provided a scientific reference for the protection and restoration of riparian reed areas and the prevention and control of non-point source pollution.
Collapse
Affiliation(s)
- Junli Wang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Zishi Fu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Fuxing Liu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China.
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China.
| | - Hongxia Qiao
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| | - Yucui Bi
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai, 201415, People's Republic of China
| |
Collapse
|
8
|
Asaad AA, El-Hawary AM, Abbas MHH, Mohamed I, Abdelhafez AA, Bassouny MA. Reclamation of wastewater in wetlands using reed plants and biochar. Sci Rep 2022; 12:19516. [PMID: 36376384 PMCID: PMC9663436 DOI: 10.1038/s41598-022-24078-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
To cope with water crisis, wastewater reuse has been introduced as a potential source for irrigation. On the other hand, irrigation with wastewater may negatively affect the surroundings. In this study, reed plant (Phragmits australis) and its biochar were tested as low-cost treatments to enhance the efficiency of wastewater reclamation in wetlands within only 72 h. The investigated water was of low irrigation quality and exhibited high contents of BOD5 and fecal coliform. Moreover, this water contained high levels of soluble cations and anions; besides, being marginally contaminated with Cu, Mn and Cd. After 2 days in the sedimentation unit, wastewater was subjected to three reclamation treatments in parallel (each lasted for 24 h): (1) a "sand & gravel bed", (2) "reed plants grown on a sand & gravel bed" and (3) "biochar + a sand & gravel bed". The results showed that all treatments decreased BOD5, fecal coliform, total cations and anions, with superiority for the second and third treatments. The levels of the potentially toxic elements also decreased to values within the permissible levels. Although the aforementioned wastewater treatment processes upgraded the quality of this water, it remained in the poor grade. Biochar or reed plants grown on sand and gravel beds significantly improved wastewater quality to the medium quality grade, with superiority for biochar treatment. In conclusion, investigated treatments are guaranteed in wetlands for wastewater reclamation; yet, further protocols should be followed to achieve safe handling of this water and attain the sustainable goals.
Collapse
Affiliation(s)
- Amany A. Asaad
- grid.463259.f0000 0004 0483 3317Central Laboratory for Environmental Quality Monitoring, National Water Research Center, El-Qanater El-Khiria, Egypt
| | - Ahmed M. El-Hawary
- grid.463259.f0000 0004 0483 3317Drainage Research Institute, National Water Research Center, El-Qanater El-Khiria, Egypt
| | - Mohamed H. H. Abbas
- grid.411660.40000 0004 0621 2741Soil and Water Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Ibrahim Mohamed
- grid.411660.40000 0004 0621 2741Soil and Water Department, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Ahmed A. Abdelhafez
- grid.252487.e0000 0000 8632 679XDepartment of Soils and Water, Faculty of Agriculture, New Valley University, Kharga, Egypt ,grid.423564.20000 0001 2165 2866National Committee of Soil Sciences, Academy of Scientific Research and Technology, Cairo, Egypt
| | - Mohamed A. Bassouny
- grid.411660.40000 0004 0621 2741Soil and Water Department, Faculty of Agriculture, Benha University, Benha, Egypt
| |
Collapse
|
9
|
Yang X, Wang G, Lei S, Li Z, Zeng B. Substance accumulation of a wetland plant, Leersia japonica, during senescence in the Yihe and Shuhe River Basin, North China. FRONTIERS IN PLANT SCIENCE 2022; 13:996587. [PMID: 36311123 PMCID: PMC9608780 DOI: 10.3389/fpls.2022.996587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Leersia japonica is a perennial Gramineae grass that is dominant in shallow wetlands of the Yihe and Shuhe River Basin, North China. Previous studies have shown that L. japonica recovers early (March), tillers strongly, and has an excellent ability to purify sewage in spring. This early revival might play a vital role in water purification function; however, whether the plant benefits from the physiological activities during senescence remains unclear. Therefore, in this study, an experiment was conducted during the winter of 2016 and in the following spring. Morphology (height, biomass, root morphology), physiology (root vitality, malondialdehyde [MDA], superoxide dismutase [SOD]), substance contents (soluble sugar, soluble protein) and substance transportation (activity of enzymes for transportation and energy supply) were determined during weeks 0, 2, 4, 6, and 8 of the senescence stage (October 11, 2016); as well as substance contents and bud increments during days 0,7, 14, 21, 31 and 41 of the revival period (February 22, 2017). The results revealed that (1) the root biomass of L. japonica increased significantly during senescence, even after the leaves withered. (2) The root diameter of L. japonica decreased significantly, while root weight per volume and root superficial area per volume increased significantly during senescence. The root vitality was relatively stable in winter, especially for root absorption area per volume. (3) No significant difference was observed in membrane stability of stems, rhizomes and roots of L. japonica in winter, with the MDA content remaining stable and SOD activity increasing significantly during senescence. (4) The soluble sugar content of all tissues of L. japonica increased sharply during senescence; while it decreased significantly in spring, especially for buds. (5) The enzymes for substance metabolism responded differently, with activities of H+-ATPase and pyruvate decarboxylase (PDC) decreasing, and alcohol dehydrogenase (ADH) increasing. Therefore, L. japonica has active morphological adaptation of roots, physiological regulation, and massive substance accumulation during senescence stage. The special life-history trait ensures L. japonica survival in winter and revival in early spring, which makes it being an excellent plant for purifying sewage in spring.
Collapse
Affiliation(s)
- Xiuyi Yang
- College of Agriculture and Forestry Science/Library; Linyi University, Linyi, China
| | - Guanqun Wang
- College of Agriculture and Forestry Science/Library; Linyi University, Linyi, China
| | - Shutong Lei
- College of Agriculture and Forestry Science/Library; Linyi University, Linyi, China
- Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, Faculty of Life Science, Southwest University, Chongqing, China
| | - Zongfeng Li
- Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, Faculty of Life Science, Southwest University, Chongqing, China
| | - Bo Zeng
- Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, Faculty of Life Science, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Application of Reeds as Carbon Source for Enhancing Denitrification of Low C/N Micro-Polluted Water in Vertical-Flow Constructed Wetland. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Constructed wetlands have been applied to micro-polluted rivers and lakes. However, they often show poor nitrogen removal efficiency due to insufficient carbon sources for complete denitrification in the waters. In this study, a vertical-flow wetland system was built, in which reeds as a carbon source were added in the middle layer of the substrate. Thereby, the effect of the reed carbon source on denitrification of micro-polluted rivers and lakes with a low C/N ratio in the wetland and the denitrification mechanism were studied. The results showed that the concentrations of NH4+-N, NO3−-N and NO2−-N in the effluent of the constructed wetland were reduced to 0.17–0.35, 0.20–0.49 and 0.01–0.02 mg/L after adding the reed carbon source, and the removal efficiencies of the system for NH4+-N and NO3−-N reached 93.84% and 84.69%, respectively. The abundances of nirK, nirS, hzo and nrfA genes in the wetland substrate increased by 95.51%, 54.96%, 52.89% and 731.95%, respectively, which was considered to be related to the enhanced denitrification, anammox and dissimilatory nitrate reduction to ammonium of the wetland system. Reed planting promoted the increased abundances of amoA and nxrB genes, which might play a positive role in enhancing nitrification in wetland systems. The result of this study may provide a theoretical basis for the ecological restoration of low C/N micro-polluted water bodies.
Collapse
|
11
|
Andersen LH, Nummi P, Rafn J, Frederiksen CMS, Kristjansen MP, Lauridsen TL, Trøjelsgaard K, Pertoldi C, Bruhn D, Bahrndorff S. Can reed harvest be used as a management strategy for improving invertebrate biomass and diversity? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113637. [PMID: 34521006 DOI: 10.1016/j.jenvman.2021.113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The succession-driven reed bed habitat hosts a unique flora and fauna including several endangered invertebrate species. Reed beds can be managed through commercial winter harvest, with implications for reed bed conservation. However, the effects of winter harvest on the invertebrate community are not well understood and vary across studies and taxonomic levels. The aim of this study was to investigate the effects of reed harvest on invertebrate communities. Ground-dwelling and aerial invertebrates were continuously sampled for 10 weeks in the largest coherent reed bed of Scandinavia in order to assess how time since last reed harvest (0, 3, and 25-years) influences invertebrate biomass, biodiversity and community structure across taxonomic levels. Biomass was measured and all specimens were sorted to order level, and Coleoptera was even sorted to species level. The invertebrate community showed distinct compositional differences across the three reed bed ages. Furthermore, biomass of both aerial and ground-dwelling invertebrates was highest in the age-0 reed bed and lowest in the age-25 reed bed. Generally, biodiversity showed an opposite trend with the highest richness and diversity in the age-25 reed bed. We conclude that it is possible to ensure high insect biomass and diversity by creating a mosaic of reed bed of different ages through small-scale harvest in the largest coherent reed bed in Scandinavia. The youngest red beds support a high invertebrate biomass whereas the oldest reed beds support a high biodiversity. Collectively, this elevate our understanding of reed harvest and the effects it has on the invertebrate communities, and might aid in future reed bed management and restoration.
Collapse
Affiliation(s)
- Line Holm Andersen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - Petri Nummi
- Department of Forest Sciences, University of Helsinki, Viikinkaari 1, Biocentre 3, 00790, Helsinki, Finland
| | - Jeppe Rafn
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark
| | | | - Mads Prengel Kristjansen
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark
| | | | - Kristian Trøjelsgaard
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark; Aalborg Zoo, Mølleparkvej 63, 9000, Aalborg, Denmark
| | - Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Simon Bahrndorff
- Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, 9220, Aalborg, Denmark
| |
Collapse
|