1
|
Ghori FA, Wu Y, Lin X, He Y, Yu Q, Chen H, Xue G. Insight into simultaneous urea hydrolysis and total nitrogen removal in textile printing wastewater: Focus on the impact of sodium sulfate salinity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122551. [PMID: 39299128 DOI: 10.1016/j.jenvman.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The textile printing industry discharges large volumes of effluent containing high concentrations of urea and nitrogenous compounds. Anoxic-oxic (AO) treatment is a promising method for treating printing wastewater. However, the effect of sodium sulfate (Na2SO4) salinity on the urea hydrolysis and nitrogen removal simultaneously in the AO process has received little attention. In this study, five batch reactors were used to treat synthetic printing wastewater with high urea and nitrogen concentrations. A strategy was applied to increase the Na2SO4 concentration from 0 to 19 g/L in the anoxic stage of each reactor. The effect of Na2SO4 on urea hydrolysis, total nitrogen removal and COD removal, sludge characteristics, and bacterial community structure were investigated. The findings showed that urea hydrolysis increased with increasing Na2SO4 concentration. The main mechanism of urea removal was intracellular hydrolysis, with a urea removal efficiency (URE%) of approximately 98% in all batch reactors. In addition, under the stress of Na2SO4, the total nitrogen and COD removal performances were partially inhibited. The most significant removal performances after AO treatment were observed at 0 g/L Na2SO4, with nitrogen and COD removal efficiencies of 88% and 95%, respectively. When Na2SO4 concentration reached 19 g/L, the sludge settling performance and compactness were enhanced. The extracellular polymeric substance (EPS) components in the sludge were dependent on their ability of removing organics. Bacterial community diversity analysis revealed that the enrichment of the Proteobacteria, Firmicutes, and Gemmatimonadota phyla in the anoxic stages of batch reactors was related to intracellular urea hydrolysis. Bacteriodota and Chloroflexi were responsible for total nitrogen removal in all anoxic and oxic stages. This research will develop the understanding of Na2SO4 salinity impact on simultaneous urea hydrolysis and nitrogen removal during AO treatment process.
Collapse
Affiliation(s)
- Faheem Ahmed Ghori
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ying Wu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Qianjiang Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| |
Collapse
|
2
|
Gong X, Xu L, Langwig MV, Chen Z, Huang S, Zhao D, Su L, Zhang Y, Francis CA, Liu J, Li J, Baker BJ. Globally distributed marine Gemmatimonadota have unique genomic potentials. MICROBIOME 2024; 12:149. [PMID: 39123272 PMCID: PMC11316326 DOI: 10.1186/s40168-024-01871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gemmatimonadota bacteria are widely distributed in nature, but their metabolic potential and ecological roles in marine environments are poorly understood. RESULTS Here, we obtained 495 metagenome-assembled genomes (MAGs), and associated viruses, from coastal to deep-sea sediments around the world. We used this expanded genomic catalog to compare the protein composition and update the phylogeny of these bacteria. The marine Gemmatimonadota are phylogenetically different from those previously reported from terrestrial environments. Functional analyses of these genomes revealed these marine genotypes are capable of degradation of complex organic carbon, denitrification, sulfate reduction, and oxidizing sulfide and sulfite. Interestingly, there is widespread genetic potential for secondary metabolite biosynthesis across Gemmatimonadota, which may represent an unexplored source of novel natural products. Furthermore, viruses associated with Gemmatimonadota have the potential to "hijack" and manipulate host metabolism, including the assembly of the lipopolysaccharide in their hosts. CONCLUSIONS This expanded genomic diversity advances our understanding of these globally distributed bacteria across a variety of ecosystems and reveals genetic distinctions between those in terrestrial and marine communities. Video Abstract.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, Guangdong, China.
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Marguerite V Langwig
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA
| | - Zhiyi Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Shujie Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Duo Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China
| | - Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Yan Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Christopher A Francis
- Departments of Earth System Science & Oceans, Stanford University, Stanford, CA, 94305, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China.
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas at Austin, Austin, TX, 78373, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Xiong X, Li Y, Yang X, Huang Z, Zhou T, Wang D, Li Z, Wang X. Long-term effect of light rare earth element neodymium on Anammox process. ENVIRONMENTAL RESEARCH 2023; 235:116686. [PMID: 37467943 DOI: 10.1016/j.envres.2023.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
During the mining of rare earth minerals, the application of neodymium-containing manures, and the treatment of spent neodymium iron boron magnet, the generation of ammonia wastewater containing neodymium is increasing. Thus, the effects of neodymium (Nd(III)) on anaerobic ammonium oxidation (Anammox) were investigated from the aspects of performance, kinetics, statistics, microbial community and sludge morphology, and the recovery strategy of EDTA-2Na wash was discussed. The nitrogen removal efficiency of the Anammox reactor decreased significantly and eventually collapsed at the Nd(III) dosing levels of 20 and 40 mg L-1, respectively. And the toxicity of Nd(III) to AnAOB was determined by the amount internalized into the cells. The EDTA-2Na wash successfully increased the total nitrogen removal rate (TNRR) of Nd(III)-inhibited Anammox to 41.60% of its initial value within 30 days, and the modified Boltzmann model accurately simulated this recovery process. The transient and extended effects of Nd(III), self-recovery, and EDTA-2Na wash on Anammox were effectively assessed using a one-sample t-test. 16S rRNA gene sequencing indicated that Nd(III) remarkably decreased the relative abundance of Planctomycetes and Candidatus Brocadia. The scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) revealed crystal-like neodymium particles on the surface of Anammox sludge. The above-mentioned results demonstrate that the concentration of Nd(III) should be below the toxicity threshold (20 mg L-1) when treating ammonia wastewater containing neodymium by Anammox, and also emphasize the importance of an appropriate recovery strategy.
Collapse
Affiliation(s)
- Xingxing Xiong
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Yun Li
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China.
| | - Xin Yang
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Zhiyuan Huang
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Tong Zhou
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Dongliang Wang
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, 330013, China
| | - Zebing Li
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, 330013, China
| | - Xiujie Wang
- Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| |
Collapse
|
4
|
Yan Y, Chen Y, Wu X, Dang H, Zeng T, Ma J, Tang C. Enhanced nitrogen removal from rural domestic sewage via partial nitrification-anammox in integrated vertical subsurface flow constructed wetland. ENVIRONMENTAL RESEARCH 2023; 233:116338. [PMID: 37311474 DOI: 10.1016/j.envres.2023.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
This study aimed to improve the removal of nitrogen treating rural domestic sewage by developing a novel strategy for achieving partial nitrification-anammox (PNA) in an integrated vertical subsurface flow constructed wetland (VSFCW). The influent ammonia was oxidized to nitrite in the partial nitrification VSFCW (VSFCWPN), and 5 mg/L of hydroxylamine was added under the appropriate dissolved oxygen concentration level (1.2 ± 0.2 mg/L) to stabilize the average nitrite accumulation rate at 88.24% and maintain the effluent NO2--N/NH4+-N ratio at 1.26 ± 0.15. The effluent from VSFCWPN was introduced to the following chamber (VSFCWAN), where ammonia and nitrite were removed by the autotrophic anammox process. This implementation achieved high removal efficiencies for chemical oxygen demand, total nitrogen, and PO43--P, reaching 86.26%, 90.22%, and 78.94%, respectively, with influent concentrations of 120.75 mg/L, 60.02 mg/L, and 5.05 mg/L. Substrate samples were collected from 10 cm height (PN1, AN1) and 25 cm height (PN2, AN2). Microbial community analysis showed that Nitrosomonas dominated the community composition in VSFCWPN, with an increase from 1.61% in the inoculated sludgePN to 16.31% (PN1) and 12.09% (PN2). Meanwhile, Ca. Brocadia accounted for 44.81% (AN1) and 36.50% (AN2) in VSFCWAN. These results confirm the feasibility of the proposed strategy for establishing PNA and efficiently treating rural domestic sewage in an integrated VSFCW.
Collapse
Affiliation(s)
- Yuan Yan
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Yongzhi Chen
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China.
| | - Xinbo Wu
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Hongzhong Dang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Tianxu Zeng
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Jiao Ma
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| | - Chenxin Tang
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China; School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Technical Center of Sewage Treatment Industry in Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
5
|
Algonin A, Zhao B, Cui Y, Xie F, Yue X. Enhancement of iron-based nitrogen removal with an electric-magnetic field in an upflow microaerobic sludge reactor (UMSR). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35054-35063. [PMID: 36525195 DOI: 10.1007/s11356-022-23836-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Traditional denitrification often produces high operating costs and excessive sludge disposal expenses due to conventional carbon sources. A novel electric-magnetic field (MF) 48 mT with Fe0 and C-Fe0 powder in an upflow microaerobic sludge reactor (UMSR) improved nitrogen removal from wastewater without organic carbon resources and gave richness to the heterotrophic bacterial community. In the current study, the reactor was operated for 78 ± 2 days, divided into five stages (without Fe0, with Fe0, coupling with MF, without coupling with MF, and coupling with MF again), at a hydraulic retention time (HRT) of 2.5 h, with an influent loading of ammonium (NH4+-N) 50 ± 2 mg/L, at 25-27 °C, and less than 1.0 mg/L dissolved oxygen (DO). The results demonstrated nitrogen removal efficiency enhanced after coupling with MF on the levels of NO3--N by 76% with an effluent concentration of 8.7 mg/L, NH4+-N by 72% with an effluent concentration of 13.6 mg/L, and total nitrogen removal (TN) by 76%, respectively. After coupling the MF with the reactor, the microbial community data analysis showed the dominant abundance of ammonia-oxidizing bacteria, heterotrophic nitrifying bacteria, and denitrifying bacteria on the level of Anaerolineaceae_uncultured 2%, which is capable of denitrification that uses Fe2+ as an electron source, Gemmatimonadaceae_uncultured 4%, Hydrogenophaga 4% which is capable of catalyzing hydrogenotrophic denitrification and correlating to nitrate removal, denitrification and desulfurization bacteria SBR1031_norank 18%, anammox-bacteria Saccharimonadales_norank 2%, and (AOM) Limnobacter 3% in the sludge.
Collapse
Affiliation(s)
- Abdulatti Algonin
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, Shanxi Province, People's Republic of China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, Shanxi Province, People's Republic of China
| | - Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, Shanxi Province, People's Republic of China
| | - Fei Xie
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, Shanxi Province, People's Republic of China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, 79 Yingzexi Road, Taiyuan, 030024, Shanxi Province, People's Republic of China.
| |
Collapse
|
6
|
Zhang C, Guo L, Qin J, Chen Z, Deng Z, Wang X. Combined partial denitrification-anammox with urea hydrolysis (U-PD-Anammox) process: A novel economical low-carbon method for nitrate-containing wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116653. [PMID: 36410300 DOI: 10.1016/j.jenvman.2022.116653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
For the sake of exploring a new economical and low-carbon alternative for real nitrate-containing wastewater treatment, a new combined partial denitrification-anammox with urea hydrolysis (U-PD-Anammox) process was developed. The nitrogen removal performance of this process was investigated through long-term operation in a sequencing batch reactor (SBR) and two submerged anaerobic biological filters (SABF). Results showed that the average NO3--N to NO2-N transformation ratio improved to 82.6% with organic carbon source to NO3-N ratio of 1.8, and urea hydrolysis provided sufficient NH4+-N and inorganic carbon to anammox process for nitrogen removal. The influent NH4+-N/NO2--N ratio for subsequent anammox reactor could be adjacent to the optimal ratio of 1.32 during the whole operation. The combined process showed efficient nitrogen removal performance with 85% NO3--N removal, 93.8% total nitrogen removal and total nitrogen loading rate as 1.1 ± 0.5 kg N/(m3·d). High-throughput sequencing analysis results revealed that Genera Thauera, Hyphomicrobium and Candidatus Brocadia were the dominant species responsible for partial denitrification, urea hydrolysis and anammox, respectively. The proposed process was more economically and environmental-friendly than the traditional denitrification process with 51.7% operational cost reduction, 99.7% N2O and 60% CO2 emission decrement, facilitating the sustainable development of the nitrate-containing wastewater treatment industry in the future.
Collapse
Affiliation(s)
- Chuchu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Lu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Jiafu Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Zhenguo Chen
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Zexi Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China
| | - Xiaojun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; Hua An Biotech Co., Ltd., Foshan 528300, China.
| |
Collapse
|
7
|
Habib S, Weinman ST. Modification of polyamide reverse osmosis membranes for the separation of urea. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Mujakić I, Piwosz K, Koblížek M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022; 10:microorganisms10010151. [PMID: 35056600 PMCID: PMC8779627 DOI: 10.3390/microorganisms10010151] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteria are an important part of every ecosystem that they inhabit on Earth. Environmental microbiologists usually focus on a few dominant bacterial groups, neglecting less abundant ones, which collectively make up most of the microbial diversity. One of such less-studied phyla is Gemmatimonadota. Currently, the phylum contains only six cultured species. However, data from culture-independent studies indicate that members of Gemmatimonadota are common in diverse habitats. They are abundant in soils, where they seem to be frequently associated with plants and the rhizosphere. Moreover, Gemmatimonadota were found in aquatic environments, such as freshwaters, wastewater treatment plants, biofilms, and sediments. An important discovery was the identification of purple bacterial reaction centers and anoxygenic photosynthesis in this phylum, genes for which were likely acquired via horizontal gene transfer. So far, the capacity for anoxygenic photosynthesis has been described for two cultured species: Gemmatimonas phototrophica and Gemmatimonas groenlandica. Moreover, analyses of metagenome-assembled genomes indicate that it is also common in uncultured lineages of Gemmatimonadota. This review summarizes the current knowledge about this understudied bacterial phylum with an emphasis on its environmental distribution.
Collapse
Affiliation(s)
- Izabela Mujakić
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Kasia Piwosz
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|