1
|
Galvão A, Rodrigues M, Mata J, Silva CM. Green walls for greywater treatment: A comprehensive review of operational parameters and climate influence on treatment performance. WATER RESEARCH 2025; 272:122948. [PMID: 39706059 DOI: 10.1016/j.watres.2024.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
Green walls for greywater treatment have emerged as a solution to increase green spaces in densely urbanized areas while providing treated greywater for reuse. Over the past decade, numerous studies have focused on optimizing these systems, though most address specific operational conditions and evaluate a limited set of performance parameters. This review synthesizes the existing literature using a meta-analysis to identify key operational factors and treatment performance metrics. A systematic search was conducted across Google Scholar, Scopus, and Web of Science, resulting in the selection of 33 studies. These studies were classified using the Köppen-Geiger climate classification, and a comprehensive database with over 8500 entries was built to analyse performance of COD, BOD, TOC, TSS, NH₄⁺, TN, TP, and bacteriological parameters across different climate zones. Results revealed performance variations across climate zones, with temperate climates outperforming dry regions. Regression equations between areal mass load and removal efficiency are proposed as design guidelines, and recommendations are made regarding optimal filling media. Additionally, for specific reuse applications, the inclusion of a disinfection unit is advised to meet microbiological quality standards.
Collapse
Affiliation(s)
- A Galvão
- CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
| | - M Rodrigues
- Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - J Mata
- Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - C M Silva
- CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| |
Collapse
|
2
|
Abd-Ur-Rehman HM, Prodanovic V, Deletic A, Khan SJ, McDonald JA, Zhang K. Removal of hydrophilic, hydrophobic, and charged xenobiotic organic compounds from greywater using green wall media. WATER RESEARCH 2023; 242:120290. [PMID: 37429135 DOI: 10.1016/j.watres.2023.120290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
Green walls offer a novel on-site approach for greywater treatment and reuse in densely build urban environments. However, they need to be engineered for effective removal of a wide range of emerging contaminants such as xenobiotic organic compounds (XOCs), which may be present in greywater due to extensive use of personal care products and household chemicals. This study used laboratory column design and batch experiments to investigate the performance of three lightweight green wall media (coco coir, zeolite, and perlite) and their mixture in three different combinations for the removal of twelve XOCs, covering wide range of hydrophilic, hydrophobic, and charged pollutants in greywater. The experiments were designed to assess the removal of targeted XOCs under different operational condition (i.e., hydraulic loading, infiltration rate, drying) and uncover the dominant mechanisms of their removal. Results showed excellent removal (>90%) of all XOCs in coco coir and media mix columns at the start of the experiment (i.e., fresh media and initial 2 pore volume (PV) of greywater dosing). The removal of highly hydrophobic and positively charged XOCs remained high (>90%) under all operational conditions, while hydrophilic and negatively charged XOCs exhibited significant reduction in removal after 25 PV and 50 PV, possibly due to their low adsorption affinity and electrostatic repulsion from negatively charged media. The effect of infiltration rate on the removal of XOCs was not significant; however, higher removal was achieved after 2-weeks of drying in coco coir and media mix columns. The dominant removal mechanism for most XOCs was found to be adsorption, however, a few hydrophilic XOCs (i.e., acetaminophen and atrazine) exhibited both adsorption and biodegradation removal processes. While findings showed promising prospects of unvegetated media for removing XOCs from greywater, long term studies on vegetated green wall systems are needed to understand any synergetic contribution of plants and media in removing these XOCs.
Collapse
Affiliation(s)
- H M Abd-Ur-Rehman
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - V Prodanovic
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - A Deletic
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - S J Khan
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - J A McDonald
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - K Zhang
- School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Estévez S, Feijoo G, Moreira MT. Environmental synergies in decentralized wastewater treatment at a hotel resort. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115392. [PMID: 35636106 DOI: 10.1016/j.jenvman.2022.115392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Climate change and water scarcity are clearly related environmental problems, making them global environmental issues. Accordingly, the water cycle management deserves a revision in its approach, integrating the concept of circular economy within an efficient and sustainable management of water resources and the design of wastewater facilities. In this sense, newly engineered decentralized facilities have emerged as a viable option for the treatment of segregated wastewater flows. The design has not only integrated the wastewater treatment function, but also resource recovery, such as water reclamation for agricultural and irrigation activities, fertigation, fertilization and energy sustainability. Based on these premises, the concept of decentralized wastewater management deserves the same degree of attention and development that has so far been reserved for conventional centralized management systems. Therefore, this paper proposes a progressive substitution of the business-as-usual scenario or centralized system by applying a small-scale wastewater management scheme performing a more efficient resource and water recovery in a medium-sized 4-5-star resort hotel. The spotlight was a membrane technology for the anaerobic digestion of the blackwater instead of the greywater treatment. A favorable environmental profile was found for the decentralized scenario under two circumstances: a large system boundary including the beneficial environmental impacts of the products and, based on the results obtained from a sensitivity analysis, an energy demand for the operation of the AnMBR lower than 2 kWh·m-3. The global warming potential results (around 9%) were even for such high demand and much larger benefits were obtained for other impact categories (94% for SOD and 98% for LU). Nevertheless, the operation (gate-to-gate approach) of these on-site recovery facilities is far from being optimized and further research should follow to decrease the 39.8% difference in the global warming potential between decentralized and centralized systems.
Collapse
Affiliation(s)
- Sofía Estévez
- Department of Chemical Engineering, CRETUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Gumersindo Feijoo
- Department of Chemical Engineering, CRETUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Teresa Moreira
- Department of Chemical Engineering, CRETUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Management of Urban Waters with Nature-Based Solutions in Circular Cities—Exemplified through Seven Urban Circularity Challenges. WATER 2021. [DOI: 10.3390/w13233334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nature-Based Solutions (NBS) have been proven to effectively mitigate and solve resource depletion and climate-related challenges in urban areas. The COST (Cooperation in Science and Technology) Action CA17133 entitled “Implementing nature-based solutions (NBS) for building a resourceful circular city” has established seven urban circularity challenges (UCC) that can be addressed effectively with NBS. This paper presents the outcomes of five elucidation workshops with more than 20 European experts from different backgrounds. These international workshops were used to examine the effectiveness of NBS to address UCC and foster NBS implementation towards circular urban water management. A major outcome was the identification of the two most relevant challenges for water resources in urban areas: ‘Restoring and maintaining the water cycle’ (UCC1) and ‘Water and waste treatment, recovery, and reuse’ (UCC2). s Moreover, significant synergies with ‘Nutrient recovery and reuse’, ‘Material recovery and reuse’, ‘Food and biomass production’, ‘Energy efficiency and recovery’, and ‘Building system recovery’ were identified. Additionally, the paper presents real-life case studies to demonstrate how different NBS and supporting units can contribute to the UCC. Finally, a case-based semi-quantitative assessment of the presented NBS was performed. Most notably, this paper identifies the most typically employed NBS that enable processes for UCC1 and UCC2. While current consensus is well established by experts in individual NBS, we presently highlight the potential to address UCC by combining different NBS and synergize enabling processes. This study presents a new paradigm and aims to enhance awareness on the ability of NBS to solve multiple urban circularity issues.
Collapse
|
5
|
Abstract
Cities are producers of high quantities of secondary liquid and solid streams that are still poorly utilized within urban systems. In order to tackle this issue, there has been an ever-growing push for more efficient resource management and waste prevention in urban areas, following the concept of a circular economy. This review paper provides a characterization of urban solid and liquid resource flows (including water, nutrients, metals, potential energy, and organics), which pass through selected nature-based solutions (NBS) and supporting units (SU), expanding on that characterization through the study of existing cases. In particular, this paper presents the currently implemented NBS units for resource recovery, the applicable solid and liquid urban waste streams and the SU dedicated to increasing the quality and minimizing hazards of specific streams at the source level (e.g., concentrated fertilizers, disinfected recovered products). The recovery efficiency of systems, where NBS and SU are combined, operated at a micro- or meso-scale and applied at technology readiness levels higher than 5, is reviewed. The importance of collection and transport infrastructure, treatment and recovery technology, and (urban) agricultural or urban green reuse on the quantity and quality of input and output materials are discussed, also regarding the current main circularity and application challenges.
Collapse
|