1
|
Li P, Luo S, Lin Y, Xiao J, Xia X, Liu X, Wang L, He X. Fundamentals of the recycling of spent lithium-ion batteries. Chem Soc Rev 2024. [PMID: 39471089 DOI: 10.1039/d4cs00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
This review discusses the critical role of fundamentals of battery recycling in addressing the challenges posed by the increasing number of spent lithium-ion batteries (LIBs) due to the widespread use of electric vehicles and portable electronics, by providing the theoretical basis and technical support for recycling spent LIBs, including battery classification, ultrasonic flaw detection, pretreatment (e.g., discharging, mechanical crushing, and physical separation), electrolyte recovery, direct regeneration, and theoretical calculations and simulations. Physical chemistry principles are essential for achieving effective separation of different components through methods like screening, magnetic separation, and flotation. Electrolyte recovery involves separation and purification of electrolytes through advanced physical and chemical techniques. Direct regeneration technology restores the structure of electrode materials at the microscopic scale, requiring precise control of the physical state and crystal structure of the material. Physical processes such as phase changes, solubility, and diffusion are fundamental to techniques like solid-state sintering, eutectic-salt treatment, and hydrothermal methods. Theoretical calculations and simulations help predict the behaviour of materials during recycling, guiding process optimization. This review provides insights into understanding and improving the recycling process, emphasizing the central role of physical chemistry principles in addressing environmental and energy issues. It is valuable for promoting innovation in spent LIB recycling processes and is expected to stimulate interest among researchers and manufacturers.
Collapse
Affiliation(s)
- Pengwei Li
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Shaohua Luo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Yicheng Lin
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Jiefeng Xiao
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiaoning Xia
- Department of Materials and Production, Aalborg University, Aalborg, 9220, Denmark
| | - Xin Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, P. R. China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Huang M, Wang M, Yang L, Wang Z, Yu H, Chen K, Han F, Chen L, Xu C, Wang L, Shao P, Luo X. Direct Regeneration of Spent Lithium-Ion Battery Cathodes: From Theoretical Study to Production Practice. NANO-MICRO LETTERS 2024; 16:207. [PMID: 38819753 PMCID: PMC11143129 DOI: 10.1007/s40820-024-01434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Direct regeneration method has been widely concerned by researchers in the field of battery recycling because of its advantages of in situ regeneration, short process and less pollutant emission. In this review, we firstly analyze the primary causes for the failure of three representative battery cathodes (lithium iron phosphate, layered lithium transition metal oxide and lithium cobalt oxide), targeting at illustrating their underlying regeneration mechanism and applicability. Efficient stripping of material from the collector to obtain pure cathode material has become a first challenge in recycling, for which we report several pretreatment methods currently available for subsequent regeneration processes. We review and discuss emphatically the research progress of five direct regeneration methods, including solid-state sintering, hydrothermal, eutectic molten salt, electrochemical and chemical lithiation methods. Finally, the application of direct regeneration technology in production practice is introduced, the problems exposed at the early stage of the industrialization of direct regeneration technology are revealed, and the prospect of future large-scale commercial production is proposed. It is hoped that this review will give readers a comprehensive and basic understanding of direct regeneration methods for used lithium-ion batteries and promote the industrial application of direct regeneration technology.
Collapse
Affiliation(s)
- Meiting Huang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Mei Wang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China.
| | - Zhihao Wang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Haoxuan Yu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Kechun Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Fei Han
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Liang Chen
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering,, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China.
| | - Chenxi Xu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Lihua Wang
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering,, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
- School of Life Science, Jinggangshan University, Ji'an, 343009, People's Republic of China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China.
- School of Life Science, Jinggangshan University, Ji'an, 343009, People's Republic of China.
| |
Collapse
|
3
|
Zhang M, Wang L, Wang S, Ma T, Jia F, Zhan C. A Critical Review on the Recycling Strategy of Lithium Iron Phosphate from Electric Vehicles. SMALL METHODS 2023:e2300125. [PMID: 37086120 DOI: 10.1002/smtd.202300125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Indexed: 05/03/2023]
Abstract
Electric vehicles (EVs) are one of the most promising decarbonization solutions to develop a carbon-negative economy. The increasing global storage of EVs brings out a large number of power batteries requiring recycling. Lithium iron phosphate (LFP) is one of the first commercialized cathodes used in early EVs, and now gravimetric energy density improvement makes LFP with low cost and robustness popular again in the market. Developments in LFP recycling techniques are in demand to manage a large portion of the EV batteries retired both today and around ten years later. In this review, first the operation and degradation mechanisms of LFP are revisited aiming to identify entry points for LFP recycling. Then, the current LFP recycling methods, from the pretreatment of the retired batteries to the regeneration and recovery of the LFP cathode are summarized. The emerging direct recovery technology is highlighted, through which both raw material and the production cost of LFP can be recovered. In addition, the current issues limiting the development of the LIBs recycling industry are presented and some ideas for future research are proposed. This review provides the theoretical basis and insightful perspectives on developing new recycling strategies by outlining the whole-life process of LFP.
Collapse
Affiliation(s)
- Mingjun Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lifan Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shiqi Wang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianyi Ma
- China Automotive Technology and Research Center Co., Ltd., Tianjin, 300300, China
| | - Feifei Jia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, China
| | - Chun Zhan
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Wang M, Liu K, Yu J, Zhang Q, Zhang Y, Valix M, Tsang DC. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200237. [PMID: 36910467 PMCID: PMC10000285 DOI: 10.1002/gch2.202200237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Indexed: 06/14/2023]
Abstract
In the recycling of retired lithium-ion batteries (LIBs), the cathode materials containing valuable metals should be first separated from the current collector aluminum foil to decrease the difficulty and complexity in the subsequent metal extraction. However, strong the binding force of organic binder polyvinylidene fluoride (PVDF) prevents effective separation of cathode materials and Al foil, thus affecting metal recycling. This paper reviews the composition, property, function, and binding mechanism of PVDF, and elaborates on the separation technologies of cathode material and Al foil (e.g., physical separation, solid-phase thermochemistry, solution chemistry, and solvent chemistry) as well as the corresponding reaction behavior and transformation mechanisms of PVDF. Due to the characteristic variation of the reaction systems, the dissolution, swelling, melting, and degradation processes and mechanisms of PVDF exhibit considerable differences, posing new challenges to efficient recycling of spent LIBs worldwide. It is critical to separate cathode materials and Al foil and recycle PVDF to reduce environmental risks from the recovery of retired LIBs resources. Developing fluorine-free alternative materials and solid-state electrolytes is a potential way to mitigate PVDF pollution in the recycling of spent LIBs in the EV era.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
- Research Centre for Environmental Technology and ManagementThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Kang Liu
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
- Research Centre for Environmental Technology and ManagementThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Jiadong Yu
- State Key Joint Laboratory of Environment Simulation and Pollution ControlSchool of EnvironmentTsinghua UniversityBeijing100084China
| | - Qiaozhi Zhang
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
- Research Centre for Environmental Technology and ManagementThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Yuying Zhang
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
- Research Centre for Environmental Technology and ManagementThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Marjorie Valix
- School of Chemical and Biomolecular EngineeringUniversity of SydneyDarlingtonNSW2008Australia
| | - Daniel C.W. Tsang
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
- Research Centre for Environmental Technology and ManagementThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| |
Collapse
|
5
|
Ma C, Wang X, Song Y, Hu H, Li W, Qiu Z, Cui Y, Xing W. Low‐temperature performance optimization of LiFePO
4
‐based batteries. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunxiang Ma
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Xiaoning Wang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Yijun Song
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Haoyu Hu
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Wei Li
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Zhijian Qiu
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Yongpeng Cui
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| | - Wei Xing
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao China
| |
Collapse
|