1
|
Mellander PE, Ezzati G, Murphy C, Jordan P, Pulley S, Collins AL. Far-future hydrology will differentially change the phosphorus transfer continuum. DISCOVER GEOSCIENCE 2024; 2:60. [PMID: 39301477 PMCID: PMC11412086 DOI: 10.1007/s44288-024-00067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Climate change is likely to exacerbate land to water phosphorus (P) transfers, causing a degradation of water quality in freshwater bodies in Northwestern Europe. Planning for mitigation measures requires an understanding of P loss processes under such conditions. This study assesses how climate induced changes to hydrology will likely influence the P transfer continuum in six contrasting river catchments using Irish national observatories as exemplars. Changes or stability of total P (TP) and total reactive P (TRP) transfer processes were estimated using far-future scenarios (RCP4.5 and RCP8.5) of modelled river discharge under climate change and observed links between hydrological regimes (baseflow and flashiness indices) and transfer processes (mobilisation and delivery indices). While there were no differences in P mobilisation between RCP4.5 and RCP8.5, both mobilisation and delivery were higher for TP. Comparing data from 2080 (2070-2099) with 2020 (2010-2039), suggests that P mobilisation is expected to be relatively stable for the different catchments. While P delivery is highest in hydrologically flashy catchments, the largest increases were in groundwater-fed catchments in RCP8.5 (+ 22% for TRP and + 24% for TP). The inter-annual variability of P delivery in the groundwater-fed catchments is also expected to increase. Since the magnitude of a P source may not fully define its mobility, and hydrological connections of mobilisation areas are expected to increase, we recommend identifying critical mobilisation areas to target future mitigation strategies. These are hydrologically connected areas where controls such as soil/bedrock chemistry, biological activity and hydrological processes are favourable for P mobilisation.
Collapse
Affiliation(s)
- Per-Erik Mellander
- Agricultural Catchments Programme, Department of Environment, Soils and Landuse, Teagasc, Johnstown Castle, Ireland
| | - Golnaz Ezzati
- Agricultural Catchments Programme, Department of Environment, Soils and Landuse, Teagasc, Johnstown Castle, Ireland
| | - Conor Murphy
- Irish Climate Analysis and Research Units, Department of Geography, Maynooth University, Co. Kildare, Ireland
| | - Phil Jordan
- Co-Centre for Climate + Biodiversity + Water, School of Geography and Environmental Sciences, Ulster University, Coleraine, Northern Ireland
| | - Simon Pulley
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, UK
| | - Adrian L Collins
- Net Zero and Resilient Farming, Rothamsted Research, North Wyke, Okehampton, UK
| |
Collapse
|
2
|
Wei L, Zhou Y, Yin G, Cui J, Yin J, Liu R, Chen Q, Zhang S. Ammonium addition reduces phosphorus leaching in a long-term mineral or organic fertilized calcareous soil during flooding conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121167. [PMID: 38749136 DOI: 10.1016/j.jenvman.2024.121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Organic amendment substitutes mineral fertilizers has been proven to increase the organic matter content of soils, which in turn may induce phosphorus (P) mobilization by triggering the redox reaction. However, under flooded conditions according to local agricultural practices, as one of the factors restricting the decomposition of organic matter, the role ammonium plays in P transformation and leaching from soils with different organic matter remains unclear. To address the knowledge gap, the calcareous soils were collected from a long-term field trial (>13 years) containing two treatments with equal P inputs: a long-term mineral fertilization and a long-term organic amendment. Both long-term mineral fertilized soil and long-term organic amended soil were split into ammonium applications or no ammonium applications. A series of column devices were deployed to create flooded conditions and monitor the P leaching from the collected soils. The K-edge X-ray absorption near-edge structure and sequential extraction method were employed jointly to detect soil P fractions and speciation, and the P sorption/desorption characteristics of soil were evaluated by Langmuir fitting. The results showed a reduction of cumulative leached P from soils by 33.2%-43.3% after ammonium addition, regardless of previous long-term mineral fertilization or organic amendment history. A significant enhancement of soil labile P pool (indicated by the H2O-P fraction and NaHCO3-P fraction) after ammonium addition results in the reduction in soil P leaching. The reduced P sorption capacity coupled with the transformation from hydroxyapatite to β-tricalcium phosphate indicated that the phosphate retention is attributed to the precipitation formation rather than phosphate sorption by soil. The present study highlights that the ammonium addition could affect the phosphate precipitation transformation. This may be attributed to the effect of ammonium addition on the calcium and magnesium ion content and molar ratio in this soil, thereby regulating the form of soil phosphate precipitation. The mechanisms revealed in this study can support developing optimized agricultural management practices to alleviate soil P loss.
Collapse
Affiliation(s)
- Lulu Wei
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Yan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Guiming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Jianyu Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Junhui Yin
- School of Agriculture, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Rui Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China.
| | - Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, PR China.
| |
Collapse
|
3
|
Hu R, Leytem AB, Moore AD, Strawn DG. Long-term dairy manure amendment promotes legacy phosphorus buildup and mobility in calcareous soils. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:365-377. [PMID: 38556891 DOI: 10.1002/jeq2.20559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/25/2024] [Indexed: 04/02/2024]
Abstract
Continuous application of dairy manure to soils can lead to excessive phosphorus (P) accumulation (legacy P), which requires understanding for managing nutrient availability and leaching. This study was conducted in Kimberly, ID, where dairy manure or conventional fertilizer was applied to calcareous soil plots under continuous crop rotations for 8 years (2013-2020), followed by 2 years with no amendment. To understand legacy P behavior in the soils, total P, organic/inorganic P, and plant-available Olsen bicarbonate P and Truog extraction measurements were made from surface and subsurface samples. Additionally, P in soluble and less soluble calcium phosphate (Ca-P) minerals was estimated using selective extractions, and P desorption was measured in a flow-through reactor. Manure amendments resulted in increased total soil P and plant-available P, particularly in the initial 5 years. In the 0- to 30-cm depth, 54%-65% of the soil P added from manure amendments was readily soluble by the Truog P test. Phosphorus released from the 2022 manure-amended soil in the desorption experiments was about five times greater than the fertilizer-amended soil, suggesting high leaching potential. After 8 years of manure amendment, subsurface Olsen-P levels exceeded the 40 mg kg-1 management threshold, suggesting P adsorption potential of the surface had become saturated, allowing for P leaching. In the manure-amended surface soils, calcium phosphate minerals increased compared to the controls. Even after 2 years without manure amendment, soluble Ca-P mineral phases persisted in the soils, which can be a long-term source of P leaching.
Collapse
Affiliation(s)
- Ruifang Hu
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| | - April B Leytem
- Northwest Irrigation and Soils Research Lab, USDA-ARS, Kimberly, Idaho, USA
| | - Amber D Moore
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon, USA
| | - Daniel G Strawn
- Department of Soil and Water Systems, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
4
|
Lei J, Yin J, Chen S, Fenton O, Liu R, Chen Q, Fan B, Zhang S. Understanding phosphorus mobilization mechanisms in acidic soil amended with calcium-silicon-magnesium-potassium fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170294. [PMID: 38272080 DOI: 10.1016/j.scitotenv.2024.170294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Calcium-silicon-magnesium-potassium fertilizer (CSMP) is usually used as an amendment to counteract soil acidification caused by historical excessive nitrogen (N) applications. However, the impact of CSMP addition on phosphorus (P) mobilization in acidic soils and the related mechanisms are not fully understood. Specifically, a knowledge gap exists with regards to changes in soil extracellular enzymes that contribute to P release. Such a knowledge gap was investigated by an incubation study with four treatments: i) initial soil (Control), ii) urea (60 mg kg-1) addition (U); iii) CSMP (1%) addition (CSMP) and iv) urea (60 mg kg-1) and CSMP (1%) additions (U + CSMP). Phosphorus mobilization induced by different processes was distinguished by biologically based P extraction. The Langmuir equation, K edge X-ray absorption near-edge structure spectroscopy, and ecoenzyme vector analysis according to the extracellular enzyme activity stoichiometry were deployed to investigate soil P sorption intensity, precipitation species, and microbial-driven turnover of organophosphorus. Results showed that CaCl2 extractable P (or citric acid extractable P) content increased by 63.4% (or 39.2%) in the soil with CSMP addition, compared with the study control. The accelerated mobilization of aluminum (Al)/iron (Fe)-bound P after CSMP addition, indicated by the reduction of the sum of FePO4·2H2O and AlPO4 proportion, contributed to this increase. The decrease of P sorption capacity can also be responsible for it. The CSMP addition increased enzyme extractable P in the soil nearly 7-fold and mitigated the limitations of carbon (C) and P for soil microorganisms (indicated by the enzyme stoichiometry and ecoenzyme vector analysis), suggesting that microbial turnover processes also contribute to P mobilization in amended acidic soil. These findings indicate that the P mobilization in CSMP amended acidic soil not only attributed to both decreasing P sorption capacity and dissolving phosphate precipitation, but also to the increase of the microbial turnover of the organophosphorus pool.
Collapse
Affiliation(s)
- Jilin Lei
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Junhui Yin
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; School of Agriculture, Sun Yat-sen University, Shenzhen 518107, PR China
| | - Shuo Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Owen Fenton
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - Rui Liu
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Bingqian Fan
- Key laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs of PR China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China.
| | - Shuai Zhang
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China.
| |
Collapse
|
5
|
Ding S, Zhang S, Wang Y, Chen S, Chen Q. Restricted colloidal-bound phosphorus release controlled by alternating flooding and drying cycles in an alkaline calcareous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123204. [PMID: 38142807 DOI: 10.1016/j.envpol.2023.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Colloid-facilitated phosphorus (P) migration plays an important role in P loss from farmland to adjacent water bodies. However, the dynamics of colloidal P (Pcoll) release as influenced by irrigation in alkaline calcareous soil remains a knowledge gap. The present study, monitored the dynamic change of Pcoll under different water management strategies: 1) control, 2) flooding, and 3) alternating flooding and drying cycles. Soil water-dispersible colloids (0.6 nm-1 μm) were extracted by combining filtration and ultrafiltration methods. The contents of P, cation and organic carbon in the water-dispersible colloids were determined and the stability and mineral composition of colloidal fractions were characterized. The results showed that Pcoll ranged from 16.5 to 25.5 mg kg-1 and represented 42.8%-64.9% of the water-extracted P in the control. Flooding significantly decreased the Pcoll content by 16.0%-62.1% (mean 32.7%) and it may be attributed to the dissolution of colloidal iron (Fe) bound P. The alternating flooding and drying treatment significantly reduced the Pcoll content by 11.6%-88.0% (mean 67.6%). The Pcoll content of the flooding event was always greater than the Pcoll content of the drying event during flooding and drying cycles. Redundancy analysis and random forest modeling showed that the colloidal calcium (Ca) and ionic strength in soil solutions had negative correlations with the Pcoll content, and pH, ionic strength and truly dissolved P were the critical factors affecting Pcoll. Drying of the flooded soil led to the decrease of pH and the increase of ionic strength, colloidal Ca content and positive charges of colloid surfaces, which promoted colloid aggregation and enhanced soil P sorption capacity. This restricted the loss potential of Pcoll. In summary, controlled flooding and drainage when managed correctly have a role to play in mitigating Pcoll loss from P-enriched calcareous soils.
Collapse
Affiliation(s)
- Shuai Ding
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, PR China.
| | - Yang Wang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing, 100193, PR China
| | - Shuo Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| |
Collapse
|
6
|
Zhang S, Wei L, Trakal L, Wang S, Shaheen SM, Rinklebe J, Chen Q. Pyrolytic and hydrothermal carbonization affect the transformation of phosphorus fractions in the biochar and hydrochar derived from organic materials: A meta-analysis study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167418. [PMID: 37774876 DOI: 10.1016/j.scitotenv.2023.167418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Carbonized organic materials are widely used to achieve soil improvement and alleviate soil pollution. The carbonization process significantly changes the total phosphorus (P) content and the P form in the solid phase derived from organic materials, which in turn has a significant impact on the P fertilizer effect in soils. In the present study, a meta-analysis with 278 observational data was conducted to detect the impact of the carbonization process (including pyrolytic carbonization and hydrothermal carbonization) on the transformation of P fractions in biochar or hydrochar derived from different organic materials. The results showed that the carbonization process significantly increased the total P content of the solid phase by 67.9%, and that the rate of P recovery from raw materials stayed high with a mean value of 86.8%. Among them, the impact of sludge-derived char was smaller when compared to the manure-derived char and biomass-derived char. The increase of total P in the biochar (or hydrochar) produced at >500 °C (or >200 °C) was more notable than that at <500 °C (or <200 °C). Simultaneously, the carbonization process significantly decreased the proportion of available P pool in the solid phase by 51.7% on average and increased the proportion of stable P pool in the solid phase by 204%. Appropriate production temperature helps to adjust the proportion of stable P pool in the solid phase. This meta-analysis pointed out that the carbonized solid phase recovers most of the P in the feedstock and that it promotes a significant transformation of available P pool in the feedstock to stable P in the carbonized solid phase. These findings provide useful information for the rational use of carbonization technology, the development of corresponding field management strategies, and the potential value of carbonized solid phase utilization.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Lulu Wei
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6, Suchdol, Czech Republic
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China.
| |
Collapse
|
7
|
Chen S, Wang L, Zhang S, Li N, Wei X, Wei Y, Wei L, Li J, Huang S, Chen Q, Zhang T, Bolan NS. Soil organic carbon stability mediate soil phosphorus in greenhouse vegetable soil by shifting phoD-harboring bacterial communities and keystone taxa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162400. [PMID: 36842585 DOI: 10.1016/j.scitotenv.2023.162400] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Addition of organic amendments, such as manure and straw, to arable fields as a partial substitute for mineral phosphorus (P), are a sustainable practice in high-efficiency agricultural production. Different organic inputs may induce varied soil organic carbon (OC) stability and phoD harboring microbes, subsequently regulate P behavior, but the underlying mechanisms are poorly understood. A 11-year field experiment examined P forms by 31P-nuclear magnetic resonance (NMR), OC chemical composition by 13C NMR, and biologically-based P availability methods, phoD bacterial communities, and their co-occurrence in soils amended with chemical P fertilizer (CF), chemical P partly substituted by organic amendments including pig manure (CM), a mixture of pig manure and corn straw (CMS), and corn straw (CS), with equal P input in all treatments. Organic amendments significantly increased soil labile Pi (CaCl2-P, citrate-P, 2.91-3.26 and 1.16-1.32 times higher than CF) and Po (enzyme-P, diesters, 4.08-7.47 and 1.71-2.14 times higher than CF) contents and phosphatase activities, while significantly decreased aromaticity (AI) and recalcitrance indexes (RI) of soil C, compared with CF. The keystone genera in manured soils (Alienimomas and Streptomyces) and straw-applied soils (Janthinobacterium and Caulobacter) were significantly correlated with soil enzyme-P, microbial biomass P (MBP), diesters, and citrate-P. Soil AI and RI were significantly correlated with the phoD keystone and soil P species. It suggested that the keystone was impacted by soil OC stability and play a role in regulating P redistribution in amended soils. This study highlights how manure and straw incorporation altered soil OC stability, shaped the phoD harboring community, and enhanced soil P biological processes promoted by the keystone taxa. The partial substitution of mineral P by mixture of manure and straw is effectively promote soil P availability and beneficial for environmental sustainability.
Collapse
Affiliation(s)
- Shuo Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Liying Wang
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, PR China
| | - Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Naihui Li
- Department of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaomeng Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuquan Wei
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, PR China
| | - Lulu Wei
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ji Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, PR China
| | - Shaowen Huang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Ding S, Zhang T, Fan B, Fan B, Yin J, Chen S, Zhang S, Chen Q. Enhanced phosphorus fixation in red mud-amended acidic soil subjected to periodic flooding-drying and straw incorporation. ENVIRONMENTAL RESEARCH 2023; 229:115960. [PMID: 37116675 DOI: 10.1016/j.envres.2023.115960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Globally, red mud is a solid waste from the aluminum industry, which is rich in iron oxides. It is an effective soil amendment in agriculture that protects connected waters from legacy diffuse phosphorus (P) soil losses. However, other management practices such as flooding and drying and/or organic carbon inputs could potentially alter P fixation in these red mud-amended soils thereby releasing P to waters. The present study was designed and conducted to monitor the mobilization of P in a red mud-amended acidic soil subjected to periodic flooding-drying, straw incorporation, and a mix of both management practices. Sequential extraction and K edge X-ray absorption near-edge structure spectroscopy (k-XANES) were employed to distinguish P fractions/species and the Langmuir model was fitted to evaluate soil P sorption capacity. The content of labile P indicated by CaCl2-P was increased significantly by 101% and 28.7% in the straw incorporation and periodic flooding-drying treatments, while it decreased significantly by 22.3% in the combined periodic flooding-drying with straw incorporation treatment, compared with Control. The inherent phosphate contained in sorghum straw, and the enhanced iron (Fe) reduction and dissolution of Calcium (Ca)-bound P induced by straw addition contributed to mobilization of P in the straw incorporation treatment. In contrast, the increased poorly crystalline Al/Fe oxides-bound P and occluded Fe-bound P fraction in the combined periodic flooding-drying with straw incorporation treatment explains the decrease in CaCl2-P. Furthermore, the increased soil P sorption capacity and the decreased P desorption rate were also responsible for the reduced P loss risk in the treatment. The results of structural equation modelling (SEM) indicated that organically complexed Fe and Fe-bound P were directly affecting P mobilization in the amended soil. Overall, the present study shows that appropriate flooding-drying events coupled with straw incorporation could be a mitigation practice for stabilizing P in red mud-amended soil. However, before it can be applied on a wide scale, multi-point and field trials should be carried out to further evaluate actual environmental implications.
Collapse
Affiliation(s)
- Shuai Ding
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Tiantian Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Beibei Fan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, PR China
| | - Bingqian Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Junhui Yin
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Shuo Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Shuai Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| | - Qing Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
9
|
Effects of concentration-dependent graphene on maize seedling development and soil nutrients. Sci Rep 2023; 13:2650. [PMID: 36788265 PMCID: PMC9929218 DOI: 10.1038/s41598-023-29725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The long-term use of chemical fertilizers to maintain agricultural production has had various harmful effects on farmland and has greatly impacted agriculture's sustainable expansion. Graphene, a unique and effective nanomaterial, is used in plant-soil applications to improve plant nutrient uptake, reduce chemical fertilizer pollution by relieving inadequate soil nutrient conditions and enhance soil absorption of nutrient components. We investigated the effects of graphene amendment on nutrient content, maize growth, and soil physicochemical parameters. In each treatment, 5 graphene concentration gradients (0, 25, 50, 100, and 150 g kg-1) were applied in 2 different types (single-layer and few-layers, SL and FL). Soil aggregates, soil accessible nutrients, soil enzyme activity, plant nutrients, plant height, stem diameter, dry weight, and fresh weight were all measured throughout the maize growth to the V3 stage. Compared to the control (0 g kg-1), we found that graphene increased the percentage of large agglomerates (0.25-10 mm) in the soil and significantly increased the geometric mean diameter (GMD) and mean weight diameter (MWD) values of > 0.25 mm water-stable agglomerates as the increase of concentration. Soil available nutrient content (AN, AP, and AK) increased, peaking at 150 g kg-1. Graphene boosted nutrient absorption by maize plants, and aboveground total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents rose with the increasing application, which raised aboveground fresh weight, dry weight, plant height, and stalk thickness. The findings above confirmed our prediction that adding graphene to the soil may improve maize plant biomass by enhancing soil fertility and improving the soil environment. Given the higher manufacturing cost of single-layer graphene and the greater effect of few-layer graphene on soil and maize plants at the same concentration, single-layer graphene and few-layer graphene at a concentration of 50 g kg-1 were the optimal application rates.
Collapse
|
10
|
Peng Y, Zhang T, Tang B, Li X, Cui S, Guan CY, Zhang B, Chen Q. Interception of fertile soil phosphorus leaching with immobilization materials: Recent progresses, opportunities and challenges. CHEMOSPHERE 2022; 308:136337. [PMID: 36084834 DOI: 10.1016/j.chemosphere.2022.136337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The non-point source pollution induced by phosphorus (P) leaching from fertile soils is accelerating the eutrophication phenomena in aqueous ecosystems. Herein, to alleviate and intercept the P leaching from the fertile soils, diverse P immobilization materials (PIM) which can transform labile P into stable P via a range of physicochemical and biological interactions have been adopted and received increasing research interest. However, the remediation mechanisms of different PIMs were complex and vary with soil properties and PIM application methods. In this review, the P fraction and mobility characteristics of different fertile soils were first introduced. Then, three kinds of PIM including inorganic materials (e.g., clay minerals and red mud), organic materials (e.g., polyacrylamide), and composites (e.g., modified biochar) applied in soil P leaching interception were concluded. The key factors (i.e., soil pH, soil texture, organic matter content and variable soil moisture) influencing PIM performance and potential PIMs used for reducing soil P leaching were also introduced. Current review can favor for proposing more suitable and insightful strategies to regulate the fertile soil P and achieve the dual goals of improving the crop land quality and yield, and preventing agricultural non-point source pollution.
Collapse
Affiliation(s)
- Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 523758, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Tiantian Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Bingbing Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 523758, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National ILan University, Yilan 260, Taiwan
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Peng Y, Zhang B, Guan CY, Jiang X, Tan J, Li X. Identifying biotic and abiotic processes of reversing biochar-induced soil phosphorus leaching through biochar modification with MgAl layered (hydr)oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157037. [PMID: 35777556 DOI: 10.1016/j.scitotenv.2022.157037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Biochar (BC) as a increasing widely adopted soil amendments showed potential threat to soil P leaching, but the relevant mechanisms were not clear enough and relevant strategy should be proposed to address the P leaching induced by BC application. In this study, effects of ordinary corn straw BC, and a fabricated Mg/Al-LDHs modified biochar (LBC) on soil P availability, adsorption, fraction and mobility were compared and investigated by conducting the column and incubation experiments at biochar to soil rate of 1 %, 2 % and 4 % (w/w). Chemical sequential extraction methods and various solid-state method (i.e., three-dimensional excitation emission matrix (EEM), x-ray diffraction (XRD), scanning electron micrograph (SEM) and P K-edge X-ray absorption near edge structure (XANES)) were utilized to give deep insights into the P mobilization and immobilization mechanisms by respectively applying the BC and LBC. Results of incubation experiments showed that applying the LBC reduced the labile P with significant CaP transformation to Al-retained P, while ordinary BC promoted the Fe/Al-P transformation to labile dibasic calcium phosphate and monobasic calcium phosphate evidenced by the EEM analysis, in-situ XANES investigation and chemical sequential extraction methods. Results of phosphatase and microbial analyses indicated that the decreased labile P after 30 days' incubation and the mitigated P leaching in LBC treatment were dominantly ascribed to abiotic processes of inorganic P transformation and (de)sorption. This research gave deep insights into abiotic and biotic processes of ordinary biochar promoting soil P leaching, and important implications for applying engineered biochar in reducing P leaching and improving soil productivity.
Collapse
Affiliation(s)
- Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China.
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Xiaoqian Jiang
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Jinfang Tan
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China.
| |
Collapse
|
12
|
Effects of Combined Applications of Biogas Slurry and Biochar on Phosphorus Leaching and Fractionations in Lateritic Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14137924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diverse soil phosphorus (P)-leaching phenomena induced by environmental disturbance have gained increasing attention. Two kinds of typical organic materials, biochar and biogas slurry, (BS) are widely utilized to amend agricultural soil, but there is little research that gives insight into their co-effects on soil P-leaching and corresponding mechanisms. Herein, a total of six treatments (viz., control, 2% (w/w) biochar, low ratio BS with or without 2% (w/w) biochar, high ratio BS with or without 2% (w/w) biochar) were conducted to investigate the P-leaching and fraction transformation mechanisms. The column experiment results showed that compared to control, sole BS application or biochar both can slightly enhance the soil-P loss by 134.8% and 39.8%. High ratios of BS induced higher P loss than the low ratios of BS by 125.1%. In comparison with the sole BS treatment, combined BS and biochar application increase P loss but result in less soil leaching of basic cations. The incubation experiment results showed that the enhanced P-leaching in combined BS and biochar treatment is probably attributable to the enhanced soil pH, decreased DPS, soil P adsorption capacity, and transformation of moderately labile Fe–P into labile P. This research helps in understanding the abiotic process of biochar and BS in promoting soil P-leaching and soil-P management using biochar and biogas slurry.
Collapse
|