1
|
Liu Z, Luo F, He L, Wang S, Wu Y, Chen Z. Physical conditioning methods for sludge deep dewatering: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121207. [PMID: 38788408 DOI: 10.1016/j.jenvman.2024.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Sludge is an inevitable waste product of sewage treatment with a high water content and large volume, it poses a significant threat of secondary pollution to both water and the atmosphere without proper disposal. In this regard, dewatering has emerged as an attractive method in sludge treatment, as it can reduce the sludge volume, enhance its transportability and calorific value, and even decrease the production of landfill leachate. In recent years, physical conditioning methods including non-chemical conditioners or energy input alone, have been extensively researched for their potential to enhance sludge dewatering efficiency, such as thermal treatment, freeze-thaw, microwave, ultrasonic, skeleton builders addition, and electro-dewatering, as well as combined methods. The main objective of this paper is to comprehensively evaluate the dewatering capacity of various physical conditioning methods, and identify key factors affecting sludge dewatering efficiency. In addition, future research anticipated directions and outlooks are proposed. This work is expected to provide valuable insights for developing efficient, eco-friendly, and low-energy consumption techniques for deep sludge dewatering.
Collapse
Affiliation(s)
- Zhuo Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Luo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingzhi He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siqi Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yi Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuqi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Li T, Zhang X, Zhou Y, Yang J, Cheng F, Fang D, Liang J, Li J, Zhou L. Enhanced dewatering extent of sludge by Fe 3O 4-driven heterogeneous Fenton. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:666-673. [PMID: 38176124 DOI: 10.1016/j.wasman.2023.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/18/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Homogeneous Fenton (Fe2+/H2O2) serves as a high-efficiency conditioning method for sludge dewatering due to the generation of strong oxidizing hydroxyl radicals (OH). However, high dose of ferric salts produces iron-rich dewatered sludge and decrease sludge organic matters, which will not be conducive to the subsequent disposal and reutilization. Considering advantages of Fe3O4 as heterogeneous Fenton catalyst, Fe3O4-activated H2O2 (Fe3O4 + H2O2) in this study was adopted to improve sludge deep-dewatering. Reduction efficiency of the bound water (71.3 %) after Fe3O4 + H2O2 treatment (after a reaction time of 30 min) were much higher than those in the Fe2++H2O2 treatment. Especially, the moisture content of treated sludge cake by Fe3O4 + H2O2 remarkably decreased from 86.4 % to 61.3 %. Improvement mechanism of sludge dewatering after Fe3O4 + H2O2 treatment mainly included electrostatic neutralization, reactive radical oxidation, and skeleton building by analysis of contribution factors. The generation of H+ in acidification could neutralize the negatively charged compounds to promote sludge hydrophobicity. Meanwhile reactive radicals generated from Fe3O4 + H2O2 destroyed sludge extracellular polymeric substances and cell structure to release intracellular water. Furthermore, Fe3O4 as a skeleton builder could reconstruct destructive sludge flocs and form new dewatering channels. Finally, low Fe leaching content and recoverability of Fe3O4 effectively will decrease environmental implication.
Collapse
Affiliation(s)
- Ting Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yujun Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Jiawei Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fange Cheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Hou J, Hong C, Ling W, Hu J, Feng W, Xing Y, Wang Y, Zhao C, Feng L. Research progress in improving sludge dewaterability: sludge characteristics, chemical conditioning and influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119863. [PMID: 38141343 DOI: 10.1016/j.jenvman.2023.119863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
Sludge from wastewater treatment processes with high water content and large volume has become an inevitable issue in environmental management. Due to the challenging dewatering properties of sludge, current mechanical dewatering methods are no longer sufficient to meet the escalating water content standards of sludge. This paper summarizes the characteristics of various sludge and raises reasons for the their dewaterability differences. Affected by extracellular polymeric substances, biological sludge is hydrophilic and negatively charged, which limits the dewatering degree. The rheological properties, flocs, ionic composition, and solid phase concentration of the sludge also influence the dewatering to some extent. For these factors, the chemical conditioning measures with simple operation and excellent effect improve its dewaterability, which mainly include flocculation/coagulation, acid/alkali treatment, advanced oxidation, surfactant treatment and combined treatment. There is a growing necessity to explore the development of new chemical conditioning agents, even though traditional agents continue to remain widely used. However, the development of these new agents should prioritize finding a balance between various factors such as efficiency, effectiveness, ease of operation, environmental safety, and cost-effectiveness. Electrochemical dewatering enhances solid-liquid separation, and its coupling with chemical conditioning is also an excellent means to further reduce water content. In addition, the improvement of press filter is an effective way, which is influenced by pressure, processing time, sludge cake thickness and pore structure, filter media etc. In general, it is essential to develop new conditioning agents and enhance mechanical filtration press technology based on a thorough understanding of various sludge properties. Concurrently, an in-depth study of the principles of mechanical pressure filtration will contribute to establishing a theoretical foundation for effective deep sludge dewatering and propel further advancements in this field.
Collapse
Affiliation(s)
- Jiachen Hou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Hong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Wei Ling
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiashuo Hu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weibo Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yijie Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengwang Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lihui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
4
|
Hu J, Gong H, Liu X, Luo J, Zhu N. Target-prepared sludge biochar-derived synergistic Mn and N/O induces high-performance periodate activation for reactive iodine radicals generation towards ofloxacin degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132362. [PMID: 37659237 DOI: 10.1016/j.jhazmat.2023.132362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Converting waste activated sludge into catalysts for the removal of antibiotics in water fulfils the dual purpose of waste-to-resource and hazardous pollution elimination. In this study, sludge-derived biochar (SDB) for efficient periodate (PI) activation was first prepared via one-step pyrolysis of potassium permanganate-polyhexamethylenebiguanide conditioned sludge without additional modification. The SDB (750 °C)-PI system degraded 100% ofloxacin (OFL, 41.5 μM) within 6 min and was almost undisturbed by inorganic ions or humic acids. The experimental results confirmed that the predominant role of reactive iodine species (RIS) and the auxiliary involvement of singlet oxygen (1O2) jointly contributed to the OFL degradation. Theoretical calculations further indicated that the synergy between Mn and N/O induced local charge redistribution and improved electron transfer capability of SDB, leading to the formation of electron-rich Mn sites and enhanced Mn(II)↔Mn(III)↔Mn(IV) redox to promote PI activation. More importantly, the enhanced adsorption and charge transfer of PI on the Mn site of the Mn-N/O-C structures induced the I-O bond stretching and the rapid generation of RIS. This study offered a cost-effective strategy for developing SDB-based catalysts, further advancing the comprehension of sludge management and the intricate mechanisms underlying RIS formation in PI-advanced oxidation processes.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Liu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Li T, Zhang X, Zhou Y, Du X, Fang D, Liang J, Li J, Zhou L. Schwertmannite-based heterogeneous Fenton for enhancing sludge dewaterability over a wide pH range. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132240. [PMID: 37562350 DOI: 10.1016/j.jhazmat.2023.132240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Fe-based Fenton technology is commonly used to enhance sludge dewaterability, but it requires subsequent neutralization, resulting in excessive chemical consumption. In this study, we investigated the feasibility of using schwertmannite-composited Fe3O4 (Sch/Fe3O4) as a heterogeneous Fenton catalyst to enhance sludge dewaterability without the need for pH adjustment. A high reduction efficiency of sludge specific resistance to filtration (94.4%), moisture content (11.4%) and bound water (45.5%) after Sch/Fe3O4 +H2O2 treatment at initial pH 7.5 were obtained, suggesting that Sch/Fe3O4 +H2O2 posed good dehydration performance without any acidification. SO42- and H+ generation in Sch/Fe3O4 system played an important role in sludge pH decrease, which facilitated sludge cell lysis, intracellular water release, and provided a suitable pH for Fenton reaction. Reactive species (•OH, •O2-, and 1O2) from Sch/Fe3O4 +H2O2 could effectively destroy sludge EPS, releasing more bound water. Additionally, the negatively charged compounds were neutralized by dissolved Fe2+/Fe3+. Sch/Fe3O4, as a skeleton builder, rearranged the dissociative sludge flocs to improve the incompressibility and permeability of sludge cake. Finally, sludge treated with Sch/Fe3O4 +H2O2 achieved organic matters reserve, heavy metals reduction, further benefiting the final disposal.
Collapse
Affiliation(s)
- Ting Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yujun Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xin Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Di Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jianru Liang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Wan P, Liu Y, Zhang Q, Jiang L, Chen H, Lv W. Enhanced degradation of extracellular polymeric substances by yeast in activated sludge to achieve sludge reduction. BIORESOURCE TECHNOLOGY 2023; 377:128915. [PMID: 36934907 DOI: 10.1016/j.biortech.2023.128915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Candida Tropicalis was used to improve the dewaterability of activated sludge (AS) and reduce its biomass by degrading EPS in AS. The protein, polysaccharide, and hydrophilic amino acids in EPS decreased by 54.50, 29.20, and 61.01%, respectively. Meanwhile, molecular weight distribution indicated that yeast degraded macromolecular organics into small molecular ones. The direct addition of yeast to AS was more conducive to EPS degradation. With the addition of 0.75 g/L of wet yeast cells and 24 h of aeration enhanced the dewaterability of AS. The CST and MLSS decreased by 24.44 and 10.51%, respectively. After 30 days of operation of lab-scale continuous SBRs, the CST and MLSS of AS were reduced by 6.37 ± 2.01 and 3.57 ± 0.52%, respectively. FTIR spectroscopy results showed that some hydrophilic functional groups were reduced. This study provides a new approach for the in-situ reduction of AS in wastewater treatment plant.
Collapse
Affiliation(s)
- Pengfei Wan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Ying Liu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Quandi Zhang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Li Jiang
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Heping Chen
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Wenzhou Lv
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
7
|
Guiomar AJ, Urbano AM. Polyhexanide-Releasing Membranes for Antimicrobial Wound Dressings: A Critical Review. MEMBRANES 2022; 12:1281. [PMID: 36557188 PMCID: PMC9781366 DOI: 10.3390/membranes12121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The prevalence of chronic, non-healing skin wounds in the general population, most notably diabetic foot ulcers, venous leg ulcers and pressure ulcers, is approximately 2% and is expected to increase, driven mostly by the aging population and the steady rise in obesity and diabetes. Non-healing wounds often become infected, increasing the risk of life-threatening complications, which poses a significant socioeconomic burden. Aiming at the improved management of infected wounds, a variety of wound dressings that incorporate antimicrobials (AMDs), namely polyhexanide (poly(hexamethylene biguanide); PHMB), have been introduced in the wound-care market. However, many wound-care professionals agree that none of these wound dressings show comprehensive or optimal antimicrobial activity. This manuscript summarizes and discusses studies on PHMB-releasing membranes (PRMs) for wound dressings, detailing their preparation, physical properties that are relevant to the context of AMDs, drug loading and release, antibacterial activity, biocompatibility, wound-healing capacity, and clinical trials conducted. Some of these PRMs were able to improve wound healing in in vivo models, with no associated cytotoxicity, but significant differences in study design make it difficult to compare overall efficacies. It is hoped that this review, which includes, whenever available, international standards for testing AMDs, will provide a framework for future studies.
Collapse
Affiliation(s)
- António Jorge Guiomar
- Chemical Process Engineering and Forest Products Research Centre, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana M. Urbano
- Molecular Physical-Chemistry R&D Unit, Center of Investigation in Environment, Genetics and Oncobiology-CIMAGO, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|