1
|
Hu Y, Jiang P, Song Y, Xiang F, Zhou X. Investigation of NaCl-Modified Graphitic Carbon Nitride for Efficient Biodiesel Production from Waste Oil via Transesterification: A Box-Behnken Design Approach. ACS OMEGA 2024; 9:15641-15649. [PMID: 38585120 PMCID: PMC10993245 DOI: 10.1021/acsomega.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
NaCl-modified graphitic carbon nitrides (GCN) were applied in the base-catalyzed transesterification of recovered oil. GCN has been seen as a prospective heterogeneous catalyst for transesterification, but pristine-GCN has a narrow range of applications because of its weak basic sites and small surface area. To overcome these defects, NaCl-modified GCN was prepared through the co-thermal polymerization of NaCl with urea. The doping of NaCl generated C≡N and Na-N species, which enhanced the basicity of the catalyst. Meanwhile, with the assistance of NaCl, GCN was decomposed and produced a large number of small pores of hundreds of nanometers, which contributed to the increase in specific surface area. In addition, the effects of transesterification parameters and their interactions on biodiesel yields were investigated by using Box-Behnken design, and the reaction conditions were optimized. A high biodiesel yield of 93.05% was achieved under the optimal conditions.
Collapse
Affiliation(s)
- Yichao Hu
- School
of Chemical Engineering, East China University
of Science and Technology, 200237 Shanghai, China
| | - Peng Jiang
- School
of Chemistry and Chemical Engineering, Anqing
Normal University, 246011 Anqing, China
| | - Yueqin Song
- School
of Chemical Engineering, East China University
of Science and Technology, 200237 Shanghai, China
| | - Fangyuan Xiang
- School
of Chemical Engineering, East China University
of Science and Technology, 200237 Shanghai, China
| | - Xiaolong Zhou
- School
of Chemical Engineering, East China University
of Science and Technology, 200237 Shanghai, China
| |
Collapse
|
2
|
Mikulčić H, Wang X, Duić N, Dewil R. Climate crisis and recent developments in bio-based restoration of ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117417. [PMID: 36739775 DOI: 10.1016/j.jenvman.2023.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Over the years, due to the climate crisis, sustainable economic growth and biodiversity protection have been increasingly promoted. Scientists, researchers, and experts in the field of sustainable development highlighted that bio-based restoration of ecosystems and responsible management of existing resources are needed to meet the needs of future generations. This paper discusses some of the latest developments in three main areas of sustainability, i.e., energy, water and environment, that emerged from the "16th Sustainable Development of Energy, Water and Environment Systems Conference - SDEWES 2021". The purpose of this introduction article is to briefly review the articles included in this Virtual Special Issue. As such, it acts as an editorial paper for the virtual special issue of the Journal of Environmental Management, dedicated to the SDEWES 2021 conference.
Collapse
Affiliation(s)
- Hrvoje Mikulčić
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000, Zagreb, Croatia.
| | - Xuebin Wang
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Neven Duić
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10000, Zagreb, Croatia.
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium; University of Oxford, Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, United Kingdom.
| |
Collapse
|
3
|
Yi M, You Y, Zhang Y, Wu G, Karrar E, Zhang L, Zhang H, Jin Q, Wang X. Highly Valuable Fish Oil: Formation Process, Enrichment, Subsequent Utilization, and Storage of Eicosapentaenoic Acid Ethyl Esters. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020672. [PMID: 36677730 PMCID: PMC9865908 DOI: 10.3390/molecules28020672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
In recent years, as the demand for precision nutrition is continuously increasing, scientific studies have shown that high-purity eicosapentaenoic acid ethyl ester (EPA-EE) functions more efficiently than mixed omega-3 polyunsaturated fatty acid preparations in diseases such as hyperlipidemia, heart disease, major depression, and heart disease; therefore, the market demand for EPA-EE is growing by the day. In this paper, we attempt to review EPA-EE from a whole-manufacturing-chain perspective. First, the extraction, refining, and ethanolysis processes (fish oil and ethanol undergo transesterification) of EPA-EE are described, emphasizing the potential of green substitute technologies. Then, the method of EPA enrichment is thoroughly detailed, the pros and cons of different methods are compared, and current developments in monomer production techniques are addressed. Finally, a summary of current advanced strategies for dealing with the low oxidative stability and low bioavailability of EPA-EE is presented. In conclusion, understanding the entire production process of EPA-EE will enable us to govern each step from a macro perspective and accomplish the best use of EPA-EE in a more cost-effective and environmentally friendly way.
Collapse
Affiliation(s)
- Mengyuan Yi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yiren Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Le Zhang
- Wuxi Children’s Hospital, Children’s Hospital Affiliated to Jiangnan University, Wuxi 214023, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|