1
|
Wang Q, Hao M, Yu F, Giannakoudakis DA, Sun Y. Enhanced degradation of 2,4-dichlorophenol in groundwater by defective iron-based metal-organic frameworks: Role of SO 3- and electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173644. [PMID: 38823695 DOI: 10.1016/j.scitotenv.2024.173644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The purposeful formation of crystal defects was regarded as an attractive strategy to enhance the catalytic activity of Fe-MOFs. In this study, the pyrolytic hydrochloric acid-modulated MIL-101-NH2 (P250HMN-2) was fabricated for the first time, and the important role of pyrolysis in the formation of crystal defects was confirmed. PDS was introduced as an enhancer for the P250HMN-2/Na2SO3 system. Without pH adjustment, 99.7 % of 2,4-DCP was removed by the P250HMN-2/Na2SO3/PDS system in 180 min. The catalytic performance of P250HMN-2 improved 2.5-fold than that of MIL-101-NH2. It was found that the high density of Fe-CUSs on P250HMN-2 were the major active sites, which could efficiently react with SO32- to generate ROS through electron transfer. The results of quenching experiments, probe tests, and EPR tests indicated that SO3-, SO4-, 1O2, OH, and SO5- were involved in the 2,4-DCP degradation process, with SO3-, SO4-, and 1O2 playing major roles. Moreover, P250HMN-2 could effectively degrade 2,4-DCP for 148 h in a fixed-bed reactor with excellent stability and reusability, indicating a promising catalyst for practical applications.
Collapse
Affiliation(s)
- Qiongyao Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Mingge Hao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Fangxin Yu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | | | - Yongchang Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
2
|
Li S, Zhang T, Zheng H, Dong X, Leong YK, Chang JS. Advances and challenges in the removal of organic pollutants via sulfate radical-based advanced oxidation processes by Fe-based metal-organic frameworks: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171885. [PMID: 38527540 DOI: 10.1016/j.scitotenv.2024.171885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Organic contaminants, notorious for their complexity and resistance to degradation, are prevalent in aquatic environments, posing severe threats to ecosystems. Sulfate radical-based advanced oxidation processes (SR-AOPs), known for their stability and high effectiveness, have become a common choice for treating organic wastewater. Metal-organic framework materials (MOFs) have garnered substantial attention due to their facile chemical manipulation, unique structural configurations, and other favorable properties. Therefore, this article critically reviews recent advances in research involving the utilization of Fe-based MOFs (Fe-MOFs) and their derivatives in SR-AOPs. Specifically, it highlights the manipulation of influencing factors within the system to enhance the degradation of organic pollutants. The mechanisms and applications underlying the degradation of organic pollutants in the SR-AOPs system are also elucidated.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Tianqi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Xu Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
3
|
Sobhani D, Djahaniani H, Duong A, Kazemian H. Efficient removal of microcystin-LR from contaminated water using water-stable MIL-100(Fe) synthesized under HF-free conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24512-24524. [PMID: 38443530 DOI: 10.1007/s11356-024-32675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Cyanobacterial algal hepatotoxins, called microcystins (MCs), are a global health concern, necessitating research on effective removal methods from contaminated water bodies. In this study, we synthesized non-fluorine MIL-100(Fe) using an environmentally friendly room-temperature method and utilized it as an adsorbent to effectively remove microcystin-LR (MC-LR), which is the most toxic MC congener. MIL-100(Fe) was thoroughly characterized, and its adsorption process was investigated under various conditions. Results revealed rapid MC-LR adsorption, achieving 93% removal in just 5 min, with the pseudo-second-order kinetic model indicating chemisorption as the primary mechanism. The Langmuir isotherm model demonstrated a monolayer sorption capacity of 232.6 µg g-1 at room temperature, showing favorable adsorption. Furthermore, the adsorption capacity increased from 183 µg g-1 at 20 °C to 311 µg g-1 at 40 °C, indicating an endothermic process. Thermodynamic parameters supported MC-LR adsorption's spontaneous and feasible nature onto MIL-100(Fe). This study highlights MIL-100(Fe) as a promising method for effectively removing harmful biological pollutants, such as MC-LR, from contaminated water bodies in an environmentally friendly manner.
Collapse
Affiliation(s)
- Dorna Sobhani
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, Canada
- Northern Analytical Lab Services (Northern BC's Environment & Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada
| | - Hooreih Djahaniani
- Northern Analytical Lab Services (Northern BC's Environment & Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, BC, Canada
| | - Ann Duong
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environment & Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada.
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, BC, Canada.
- Environmental Sciences Program, Faculty of Environment, University of Northern British Columbia, Prince George, British Columbia, V2N4Z9, Canada.
| |
Collapse
|
4
|
Tan J, Zhang X, Lu Y, Li X, Huang Y. Role of Interface of Metal-Organic Frameworks and Their Composites in Persulfate-Based Advanced Oxidation Process for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21-38. [PMID: 38146074 DOI: 10.1021/acs.langmuir.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persulfate activation-based advanced oxidation process (PS-AOP) is an important technology in wastewater purification. Using metal-organic frameworks (MOFs) as heterogeneous catalysts in the PS-AOP showed good application potential. Considering the intrinsic advantages and disadvantages of MOF materials, combining MOFs with other functional materials has also shown excellent PS activation performance and even achieves certain functional expansion. This Review introduces the classification of MOFs and MOF-based composites and the latest progress of their application in PS-AOP systems. The relevant activation/degradation mechanisms are summarized and discussed. Moreover, the importance of catalyst-related interfacial interaction for developing and optimizing advanced oxidation systems is emphasized. Then, the interference behavior of environmental parameters on the interfacial reaction is analyzed. Specifically, the initial solution pH and coexisting inorganic anions may hinder the interfacial reaction process via the consumption of reactive oxygen species, affecting the activation/degradation process. This Review aims to explore and summarize the interfacial mechanism of MOF-based catalysts in the activation of PS. Hopefully, it will inspire researchers to develop new AOP strategies with more application prospects.
Collapse
Affiliation(s)
- Jianke Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuwan Lu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Du C, Lv Y, Cao J, Zhu H, Zhang Y, Zou Y, Peng H, Dong W, Zhou L, Yu G, Yu H, Jiang J. Removal of oxytetracycline from water by S-doped MIL-53(Fe): Synergistic effect of surface adsorption and persulfate activation. ENVIRONMENTAL RESEARCH 2023; 239:116842. [PMID: 37549781 DOI: 10.1016/j.envres.2023.116842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
In this study, a novel catalyst based on MIL-53(Fe) was synthesized and modified through sublimed sulfur (S-MIL-53(Fe)) to induce a synergistic effect of surface adsorption and persulfate activation. The S-doped modification not only increased the surface area but also accelerated the electron transfer process of the iron cycle. The performance of the newly synthesized S-MIL-53(Fe) adsorptive catalyst was evaluated by chemical adsorption and peroxydisulfate (PDS) activated removal of an emerging pollutants, oxytetracycline (OTC). The S-MIL-53(Fe) adsorptive catalyst was able to adsorb 61.7% of OTC after 120 min, and the removal efficiency reached 84.8% within 5 min after PDS dosing. The boosting effect of sulfur on the system was confirmed by characterization analysis and experimental testing. Even after 7 cycles, the removal efficiency of S-MIL-53(Fe) (69.0%) for OTC remained superior to that of pure MIL-53(Fe) (25.1%). Additionally, the adsorption kinetics and adsorption isotherm model of the material were investigated. The possible OTC degrading process was proposed based on radical quenching and electron paramagnetic resonance (EPR). This study provides a feasible way to fabricate an S-doped MIL-53(Fe) adsorptive catalyst for the remediation of antibiotics-containing wastewater.
Collapse
Affiliation(s)
- Chunyan Du
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Yinchu Lv
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Jiao Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China.
| | - Hao Zhu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yin Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Yulv Zou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Huaiyuan Peng
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Wei Dong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| | - Lu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Hanbo Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| | - Jingyi Jiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, PR China; Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, PR China
| |
Collapse
|
6
|
Cai J, Peng Y, Jiang Y, Li L, Wang H, Li K. Application of Fe-MOFs in Photodegradation and Removal of Air and Water Pollutants: A Review. Molecules 2023; 28:7121. [PMID: 37894600 PMCID: PMC10609057 DOI: 10.3390/molecules28207121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Photocatalytic technology has received increasing attention in recent years. A pivotal facet of photocatalytic technology lies in the development of photocatalysts. Porous metal-organic framework (MOF) materials, distinguished by their unique properties and structural characteristics, have emerged as a focal point of research in the field, finding widespread application in the photo-treatment and conversion of various substances. Fe-based MOFs have attained particular prominence. This review explores recent advances in the photocatalytic degradation of aqueous and gaseous substances. Furthermore, it delves into the interaction between the active sites of Fe-MOFs and pollutants, offering deeper insights into their mechanism of action. Fe-MOFs, as photocatalysts, predominantly facilitate pollutant removal through redox processes, interaction with acid sites, the formation of complexes with composite metal elements, binding to unsaturated metal ligands (CUSs), and hydrogen bonding to modulate their respiratory behavior. This review also highlights the focal points of future research, elucidating the challenges and opportunities that lie ahead in harnessing the characteristics and advantages of Fe-MOF composite catalysts. In essence, this review provides a comprehensive summary of research progress on Fe-MOF-based catalysts, aiming to serve as a guiding reference for other catalytic processes.
Collapse
Affiliation(s)
- Jun Cai
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| | - Yang Peng
- Kunming Electric Power Design Institute Limited Liability Company, Kunming 650034, China
| | - Yanxin Jiang
- Yunnan Hubai Environmental Protection Technology Co., Ltd., Kunming 650034, China
| | - Li Li
- Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Hua Wang
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
| | - Kongzhai Li
- National Joint Engineering Research Center of Energy Saving and Environmental Protection Technology in Metallurgy and Chemical Engineering Industry, Kunming University of Science and Technology, Kunming 650093, China;
| |
Collapse
|
7
|
Chen X, Yao L, He J, Li J, Xu S, Li N, Zhu Y, Chen X, Zhu R. Enhanced degradation of tetracycline under natural sunlight through the synergistic effect of Ag 3PO 4/MIL-101(Fe) photocatalysis and Fenton catalysis: Mechanism, pathway, and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131024. [PMID: 36821899 DOI: 10.1016/j.jhazmat.2023.131024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Here, we show that the adverse environmental and health effects of tetracycline (TC) can be efficiently reduced by encapsulating Ag3PO4 into MIL-101(Fe) to construct a Ag3PO4/MIL-101(Fe) heterojunction composite through advanced oxidation processes, such as Fenton catalysis, photocatalysis, and photo-Fenton catalysis. Notably, the reaction can be driven by natural sunlight and does not require any artificial energy source. Remarkably, the optimal degradation of TC can be achieved under different compositions of the composite system through photocatalysis and photo-Fenton catalysis. For photo-Fenton catalysis, the maximum degradation rate of TC (2.5730 min-1) is achieved when the mass ratio of MIL-101(Fe) to Ag3PO4 in the composite is 5:1, which is 31.65- and 3.12-fold of that in the Ag3PO4 + PDS + Sunlight and MIL-101(Fe) + PDS+ Sunlight catalyst systems, respectively. Moreover, the internal conversion of matrix during photocatalysis and Fenton catalysis processes inhibits the photocorrosion of Ag3PO4 and improves the reusability of the composite. Furthermore, it is found that both radical and non-radical species participate in the TC degradation. Besides, the degradation products and catalytic mechanism of Ag3PO4 and Ag3PO4/MIL-101(Fe) systems are explored. The toxicity evaluation results suggest that the intermediates produced during Ag3PO4/MIL-101(Fe) catalysis have a lower biotoxicity than those produced during Ag3PO4 catalysis. Overall, this work provides an effective strategy to inhibit the inherent photocorrosion of Ag3PO4 and establishes an efficient catalytic system for the treatment of organic-contaminated wastewater under natural sunlight conditions.
Collapse
Affiliation(s)
| | - Liang Yao
- Foshan University, Foshan 528225, China
| | - Juhua He
- Foshan University, Foshan 528225, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, 999077, Hong Kong, China
| | - Jiesen Li
- Foshan University, Foshan 528225, China; Department of Research and Development, Guangzhou Ginpie Technology Co., Ltd., Guangzhou 510670, China
| | - Song Xu
- Foshan University, Foshan 528225, China
| | - Ning Li
- Foshan University, Foshan 528225, China.
| | - Yanping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xin Chen
- Foshan University, Foshan 528225, China
| | - Runliang Zhu
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
8
|
Ma X, Yuan H, Qiao Q, Zhang S, Tao H. Enhanced catalysis for degradation of rhodamine B by amino-functionalized Fe-MOFs with high adsorption capacity. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Dutta M, Bora J, Chetia B. Overview on recent advances of magnetic metal-organic framework (MMOF) composites in removal of heavy metals from aqueous system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13867-13908. [PMID: 36547836 DOI: 10.1007/s11356-022-24692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Developing a novel, simple, and cost-effective analytical technique with high enrichment capacity and selectivity is crucial for environmental monitoring and remediation. Metal-organic frameworks (MOFs) are porous coordination polymers that are self-assembly synthesized from organic linkers and inorganic metal ions/metal clusters. Magnetic metal-organic framework (MMOF) composites are promising candidate among the new-generation sorbent materials available for magnetic solid-phase extraction (MSPE) of environmental contaminants due to their superparamagnetism properties, high crystallinity, permanent porosity, ultrahigh specific surface area, adaptable pore shape/sizes, tunable functionality, designable framework topology, rapid and ultrahigh adsorption capacity, and reusability. In this review, we focus on recent scientific progress in the removal of heavy metal ions present in contaminated aquatic system by using MMOF composites. Different types of MMOFs, their synthetic approaches, and various properties that are harnessed for removal of heavy metal ions from contaminated water are discussed briefly. Adsorption mechanisms involved, adsorption capacity, and regeneration of the MMOF sorbents as well as recovery of heavy metal ions adsorbed that are reported in the last ten years have been discussed in this review. Moreover, particular prospects, challenges, and opportunities in future development of MMOFs towards their greener synthetic approaches for their practical industrial applications have critically been considered in this review.
Collapse
Affiliation(s)
- Mayuri Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Jyotismita Bora
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Bolin Chetia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
10
|
Abbasnia A, Zarei A, Yeganeh M, Sobhi HR, Gholami M, Esrafili A. Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Oxytetracycline removal and E. Coli inactivation by decomposition of hydrogen peroxide in a continuous fixed bed reactor using heterogeneous catalyst. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Dong X, Li Y, Li D, Liao D, Qin T, Prakash O, Kumar A, Liu J. A new 3D 8-connected Cd( ii) MOF as a potent photocatalyst for oxytetracycline antibiotic degradation. CrystEngComm 2022. [DOI: 10.1039/d2ce01121b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1 exhibits the best photocatalytic decomposition efficiency towards antibiotic OXY. The plausible photocatalytic mechanism has been explained with the help of the density of states calculations and Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Xiuyan Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Yuyan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Duqingcuo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Donghui Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Tianrui Qin
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Om Prakash
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| |
Collapse
|