1
|
Liu Y, Ni S, Wang W, Zhao Y, Meng Y, Liu H, Yang L. Facile and scalable synthesis of functionalized hierarchical porous polymers for efficient uranium adsorption. WATER RESEARCH 2024; 257:121683. [PMID: 38703542 DOI: 10.1016/j.watres.2024.121683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/08/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Efficient uranium capture from wastewater holds great importance for the environmental remediation and sustainable development of nuclear energy, but it is a tremendous challenge. Herein, a facile and scalable approach is reported to fabricate functionalized hierarchical porous polymers (PPN-3) decorated with high density of phosphate groups for uranium adsorption. The as-constructed hierarchical porous structure could allow rapid diffusion of uranyl ions, while abundant phosphate groups that serve as adsorption sites could provide the high affinity for uranyl. Consequently, PPN-3 shows a high uranium adsorption uptake of 923.06 mg g-1 and reaches adsorption equilibrium within simply 10 min in uranium-spiked aqueous solution. Moreover, PPN-3 affords selective adsorption of uranyl over multiple metal ions and possesses a rapid and high removal rate of U(VI) in real water systems. Furthermore, this study offers direct polymerization strategy for the cost-effective fabrication of phosphate-functionalized porous organic polymers, which may provide promising application potential for uranium extraction.
Collapse
Affiliation(s)
- Yafeng Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shan Ni
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Wenjie Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yue Zhao
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuan Meng
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Huizhou Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Liangrong Yang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Borchert KBL, Gerlach N, Steinbach C, Reis B, Schwarz S, Schwarz D. SiO 2 nanospheres as surfactant and template in aqueous dispersion polymerizations yielding highly nanoporous resin particles. J Colloid Interface Sci 2023; 637:372-388. [PMID: 36724662 DOI: 10.1016/j.jcis.2023.01.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
HYPOTHESIS High nitrogen containing resins such as poly(melamine-co-formaldehyde) (PMF) are known for their very good adsorption properties. Until now, using an ecofriendly hard-templating approach with SiO2 nanospheres in water for synthesis, only yielded either highly porous particles with diameters up to 1 µm or non-porous particles with diameters above 1 µm. Small particles cannot be used as fixed bed adsorbents in columns because of the very high pressure occurring. EXPERIMENTS To yield particles with high porosity and larger diameters for the use as fixed bed adsorbent, we investigated the influence of several synthesis parameters on porosity and particle morphology. FINDINGS From all variations, we proposed a mechanism for the complex interplay between the PMF prepolymer and resin species with SiO2 nanoparticles acting both as Pickering-like surfactant and template particle. With this knowledge we were able to produce a suitable column material with high specific surface area up to 260 m2/g. We then proved the application of this material for aqueous dichromate adsorption in batch, yielding a maximum capacity of 138 mg/g with recyclability. In column experiments, the contamination of 5 mg/L dichromate in water was reduced to drinking water safe levels for an influent volume equal to over 160 bed volumes.
Collapse
Affiliation(s)
| | - Niklas Gerlach
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Christine Steinbach
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Berthold Reis
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Dana Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany.
| |
Collapse
|
3
|
Reis B, Borchert KBL, Steinbach C, Kohn BD, Scheler U, Reuter U, Gerlach N, Schwarz D, Guskova O, Schwarz S. Polarity and functionality tailored conjugated microporous polymer coatings on silica microspheres for enhanced pollutant adsorption. J Colloid Interface Sci 2023; 644:325-332. [PMID: 37120881 DOI: 10.1016/j.jcis.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Many sources of pollution that are generated by modern society are not addressable by conventional methods. Especially organic compounds, like pharmaceutics, are particularly hard to remove from waterbodies. Herein, a new approach is presented using conjugated microporous polymers (CMPs) to coat silica microparticles yielding specifically tailored adsorbents. The CMPs are generated with three different monomers: 2,6-dibromonaphthalene (DBN), 2,5-dibromoaniline (DBA) and 2,5-dibromopyridine (DBPN) respectively coupled to 1,3,5-triethynylbenzene (TEB) via Sonogashira coupling. By optimizing the polarity of the silica surface, all three CMPs were converted into microparticle coatings. The resulting hybrid materials feature the advantages of being adjustable in polarity and functionality, as well as morphology. Sedimentation allows facile removal of the coated microparticles after the adsorption. Further, the expansion of the CMP to a thin coating increases the accessible surface area compared to the bulk material. These effects were demonstrated by the adsorption of the model drug diclofenac. Thereby, the aniline-based CMP proved to be most advantageous due to a secondary crosslinking mechanism of amino and alkyne functionalities. An outstanding adsorption capacity of 228 mg diclofenac per gram of the aniline CMP within the hybrid material was achieved. This represents a five-fold increase compared to the value obtained by the pure CMP material underlining the advantages of the hybrid material.
Collapse
Affiliation(s)
- Berthold Reis
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany.
| | | | - Christine Steinbach
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany.
| | - Benjamin D Kohn
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany.
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany.
| | - Uta Reuter
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany.
| | - Niklas Gerlach
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany.
| | - Dana Schwarz
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany.
| | - Olga Guskova
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany.
| | - Simona Schwarz
- Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Straße 6, 01069 Dresden, Germany.
| |
Collapse
|