1
|
Mishra SR, Gadore V, Singh KR, Pandey SS, Ahmaruzzaman M. Developing In 2S 3 upon modified MgTiO 3 anchored on nitrogen-doped CNT for sustainable sensing and removal of toxic insecticide clothianidin. ENVIRONMENTAL RESEARCH 2024; 259:119435. [PMID: 38914255 DOI: 10.1016/j.envres.2024.119435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/24/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
Herein, the study introduces a novel bifunctional In2S3/MgTiO3/TiO2@N-CNT (IMTNC) nanocomposite, which is poised to revolutionize the detection and removal of clothianidin (CLD) from aquatic environments by synergistic adsorption and photodegradation. Confirmation of the material's synthesis was done using structural, optical, morphological, and chemical characterizations. An outstanding sensitivity of 2.168 μA/nM.cm2 with a linear range of 4-100 nM and a LOD of 0.04 nM, along with an exceptional elimination efficiency of 98.06 ± 0.84% for about 10 ppm CLD within 18 min was demonstrated by the IMTNC nanocomposite. Extensive studies were carried out to appraise the material's effectiveness in the presence of various interfering species, such as cations, anions, organic compounds, and different water matrices, and a comprehensive assessment of its stability throughout several cycles was made. Response Surface Methodology (RSM) study was used to determine the ideal removal conditions for improved performance. In addition, the catalytic performance in removing various other pollutants was also analyzed. Adding In2S3 and developing N-doped Carbon Nanotubes (N-CNT) increased conductivity and higher electrochemical sensing skills, improving charge transfer and increasing photocatalytic activity. This research underscores the potential of the IMTNC nanocomposite as a promising candidate for advanced environmental sensing and remediation applications.
Collapse
Affiliation(s)
- Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Vishal Gadore
- Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India.
| |
Collapse
|
2
|
Zahra T, Javeria U, Jamal H, Baig MM, Akhtar F, Kamran U. A review of biocompatible polymer-functionalized two-dimensional materials: Emerging contenders for biosensors and bioelectronics applications. Anal Chim Acta 2024; 1316:342880. [PMID: 38969417 DOI: 10.1016/j.aca.2024.342880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/07/2024]
Abstract
Bioelectronics, a field pivotal in monitoring and stimulating biological processes, demands innovative nanomaterials as detection platforms. Two-dimensional (2D) materials, with their thin structures and exceptional physicochemical properties, have emerged as critical substances in this research. However, these materials face challenges in biomedical applications due to issues related to their biological compatibility, adaptability, functionality, and nano-bio surface characteristics. This review examines surface modifications using covalent and non-covalent-based polymer-functionalization strategies to overcome these limitations by enhancing the biological compatibility, adaptability, and functionality of 2D nanomaterials. These surface modifications aim to create stable and long-lasting therapeutic effects, significantly paving the way for the practical application of polymer-functionalized 2D materials in biosensors and bioelectronics. The review paper critically summarizes the surface functionalization of 2D nanomaterials with biocompatible polymers, including g-C3N4, graphene family, MXene, BP, MOF, and TMDCs, highlighting their current state, physicochemical structures, synthesis methods, material characteristics, and applications in biosensors and bioelectronics. The paper concludes with a discussion of prospects, challenges, and numerous opportunities in the evolving field of bioelectronics.
Collapse
Affiliation(s)
- Tahreem Zahra
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Umme Javeria
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan
| | - Hasan Jamal
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology, 333, Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Mirza Mahmood Baig
- Department of Chemistry, University of Narowal, Narowal, Punjab, 51600, Pakistan; Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden.
| | - Urooj Kamran
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden; Institute of Advanced Machinery Design Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Mishra SR, Roy P, Gadore V, Ahmaruzzaman M. A combined experimental and modeling approach to elucidate the adsorption mechanism for sustainable water treatment via In 2S 3-anchored chitosan. Sci Rep 2023; 13:18051. [PMID: 37872297 PMCID: PMC10593836 DOI: 10.1038/s41598-023-45506-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
A novel Chitosan/Indium sulfide (CS/In2S3) nanocomposite was created by co-precipitating Chitosan and InCl3 in solution, resulting in In2S3 agglomeration on the Chitosan matrix with a remarkable pore diameter of 170.384 Å, and characterized it for the physical and chemical properties. Under optimal conditions (pH = 7, time = 60 min, catalyst dosage = 0.24 g L-1, and dye concentration = 100 mg L-1), the synthesized nanocomposite demonstrated remarkable adsorption capabilities for Victoria Blue (VB), attaining a removal efficiency of 90.81%. The Sips adsorption isotherm best matched the adsorption process, which followed pseudo-second-order kinetics. With a rate constant of 6.357 × 10-3 g mg-1 min-1, the highest adsorption capacity (qm) was found to be 683.34 mg g-1. Statistical physics modeling (SPM) of the adsorption process revealed multi-interaction and multi-molecular adsorption of VB on the CS/In2S3 surface. The nanocomposite demonstrated improved stability and recyclability, indicating the possibility for low-cost, reusable wastewater dye removal adsorbents. These results have the potential to have practical applications in environmental remediation.
Collapse
Affiliation(s)
| | - Prerona Roy
- Department of Chemistry, National Institute of Technology, Silchar, India
| | - Vishal Gadore
- Department of Chemistry, National Institute of Technology, Silchar, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, India.
| |
Collapse
|
4
|
Jana TK, Chatterjee K. Hybrid nanostructures exhibiting both photocatalytic and antibacterial activity-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95215-95249. [PMID: 37597146 DOI: 10.1007/s11356-023-29015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
The most vital issues of the modern world for a sustainable future are "health" and "the environment." Scientific endeavors to tackle these two major concerns for mankind need serious attention. The photocatalytic activity toward curbing environmental pollution and antibacterial performance toward a healthy society are two directions that have been emphasized for decades. Recently, materials engineering, in their nanodimension, has shown tremendous possibilities to integrate these functionalities within the same materials. In particular, hybrid nanostructures have shown magnificent prospects to combat both crucial challenges. Many researchers are separately engaged in this important field of research but the collective knowledge on this domain which can facilitate them to excel is badly missing. The present article integrates the development of different hybrid nanostructures which exhibit both photocatalytic degradations of environmental pollutants and antibacterial efficiency. Various synthesis techniques of those hybrid nanomaterials have been discussed. Hybrid nanosystems based on several successful materials have been categorically discussed for better insight into the research advancement in this direction. In particular, Ag-based, metal oxides-based, layered carbon material-based, and Mexene- and self-cleaning-based materials have been chosen for detailing their performance as anti-pollutant and antibacterial materials. Those hybrid systems along with some miscellaneous booming nanostructured materials have been discussed comprehensively with their success and limitations toward their bifunctionality as antipollutant and antibacterial agents.
Collapse
Affiliation(s)
- Tushar Kanti Jana
- Department of Physics, Vidyasagar University, Midnapore, 721102, India
| | - Kuntal Chatterjee
- Department of Physics, Vidyasagar University, Midnapore, 721102, India.
| |
Collapse
|
5
|
Bhuyan A, Ahmaruzzaman M. Recent advances in new generation nanocomposite materials for adsorption of pharmaceuticals from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39377-39417. [PMID: 36752919 DOI: 10.1007/s11356-023-25707-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
With rapid increase in the human population, a large amount of wastewater is generated every year. The availability of fresh water is decreasing at an alarming rate due to rapid industrialization and agricultural development. Pharmaceutical drugs which are credited for improving standards of life worldwide have emerged as major water contaminants, raising global concern about their potential risk to human health and environment. The presence of pharmaceutical compounds is detected in surface water (sea, river, lakes, etc.), groundwater, effluents from municipal, hospitals, and wastewater treatment plants, and even in drinking water. Efficient removal of pharmaceutical pollutants still remains a challenging task. Many techniques, including photodegradation, photocatalysis, oxidation, reverse osmosis, biodegradation, nanofiltration, adsorption, etc., have been used for the remediation of wastewater. Adsorption of pharmaceutical compounds on nanoadsorbents, as a low-cost and feasible technology, has gained immense popularity for wastewater treatment over the last decade. Adsorption techniques can be integrated with wastewater treatment plants to achieve efficient removal on an industrial level. Herein, we review the literature on the remediation techniques used for the pharmaceutical waste treatment using carbon nanotubes, metal oxides, nanoclay, and new-generation MXenes via adsorption. These materials show excellent adsorptive properties owing to their high surface area, low cost, high porosity, easy functionalization, and high surface reactivity. The adsorption mechanism of the nanoadsorbents and their reusability as a factor of sustainability have also been included in the review. The factors affecting the adsorption, including pH, the concentration of adsorbate, ionic strength, and adsorbate dose, have also been discussed.
Collapse
Affiliation(s)
- Anindita Bhuyan
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
6
|
Gong K, Yin L, Shi C, Qian X, Zhou K. Dual char-forming strategy driven MXene-based fire-proofing epoxy resin coupled with good toughness. J Colloid Interface Sci 2023; 640:434-444. [PMID: 36870219 DOI: 10.1016/j.jcis.2023.02.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
It is challenging that the functionalized MXene-based nanofillers are designed to modify the inherent flammability and poor toughness of epoxy polymeric materials and further to facilitate the application of EP composites. Herein, silicon-reinforced Ti3C2Tx MXene-based nanoarchitectures (MXene@SiO2) are synthesized by simple self-growth method, and its enhancement effects on epoxy resin (EP) are investigated. The as-prepared nanoarchitectures realize homogeneous dispersion in EP matrix, indicating well performance-enhancing potential. The incorporation of MXene@SiO2 achieves improved thermal stability for EP composites with higher T-5% and lower Rmax values. Moreover, EP/2 wt% MXene@SiO2 composites obtain a 30.2% and 34.0% reduction in peak heat release rate (PHRR) and peak smoke production rate (PSPR) compared to those of pure EP, respectively, also achieving a 52.5% fall in smoke factor (SF) values and increased yield and stability of chars. The dual char-forming effects of MXene@SiO2 nanoarchitectures, including the catalytic charring of MXene and the migration of SiO2 to induce charring, are accounted for the results, as well as lamellar barrier effects. Additionally, EP/MXene@SiO2 composites achieve an enhanced storage modulus of 51.5%, along with improved tensile strength and elongation at break, compared to those of pure EP.
Collapse
Affiliation(s)
- Kaili Gong
- Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074 PR China
| | - Lian Yin
- Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074 PR China
| | - Congling Shi
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, PR China.
| | - Xiaodong Qian
- Beijing Key Laboratory of Metro Fire and Passenger Transportation Safety, China Academy of Safety Science and Technology, Beijing 100012, PR China
| | - Keqing Zhou
- Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, Hubei 430074 PR China.
| |
Collapse
|